

Sham Mahajan

Independent

Bonnie Chen

Emory University

Alire: Northw

A Design Space for VIsual Belief Elicitation in Data Journalism

Alireza Karduni

Northwestern University

Yea-seul Kim

University of Wisconsin, Madison

Emily Wall

Emory University

What are beliefs?

Mental representations related to a phenomenon that can be characterized as numerical or categorical values

Belief elicitation in Data Journalism

The New York Eimes

FiveThirtyEight

You Draw It: What Got Better or Worse During Obama's Presidency

By LARRY BUCHANAN, HAEYOUN PARK and ADAM PEARCE JAN. 15, 2017

Draw your guesses on the charts below to see if you're as smart as you think you are.

Do You Know Where America Stands On Guns?

By Dhrumil Mehta and Julia Wolfe Get the data on GitHub

It seems almost routine. There's a high-profile mass shooting, followed by a week or two of fierce debate around gun policy. (And usually no legislative change.)

When it comes to the specific policy debates, where does the American public stand? This is normally where we'd answer that question for you, but why should we do all the work?

How well do you know how Americans feel about guns? Let's start with the basics. (Keep in mind: This all comes from polling¹ conducted after the school shooting at Stoneman Douglas High School in Parkland, Florida.)

nat share of Americans support s t	tric
25	
↓ LESS	SUP

PUBLISHED 10:00 AM EST | MAR 9, 2018

Source: fivethirtyeight.com

Why elicit beliefs?

Why elicit beliefs?

Belief elicitation can improve recall and comprehension of data

[Kim et. al, CHI 2017]

Commonly used to increase engagement in data journalism

Beliefs can form into biases

[Wall et. al, VIS 2017]

Potentially mitigate biases

Bayesian cognitive models depend on measuring beliefs at the beginning of data exploration and again in response to some stimuli (new data)

[Karduni et. al, TVCG 2020]

Enable future research directions related to cognition, decision-making

Our contribution

What is VIBE?

A design space for creating visualization-driven interfaces

for visualization creators like data journalists, designers, or visualization experts

to elicit people's beliefs

What is VIBE?

2. Belief elicitation

\rightarrow Who properties about the user	→ Why some example motivations	
Whose beliefs Individual Group Subject expertise Graphical Statistical Domain	 To promote reflection To personalize vis based on beliefs To help users concretize their beliefs To compare with data or others' beliefs To educate To explore what-if scenarios 	
When which stage of belief Existing beliefs Existing beliefs Updated beliefs	Dataset source	
\ominus What the thing we are eliciting	⊖ How some example interface methods	
Parameter	Interaction technique	
— Point estimate	Drawing Clicking Typing	
Correlation/trend Extrema	Dragging Hover/mouseover	
Measure of central tendency	Zoom Slide Scrolling	
Binary Comple proportion		
- Distribution	Bar chart Map Pie chart Image	
Ranking	Scatterplot Likert scale Line chart	
Uncertainty With Without	Direct/self-reported Indirect/inferred	
 ☆ How to elicit truthful beliefs: Make the belief more salient in the user's memory e.g. show a picture Make the mechanism match the mental model for how people represent their beliefs in their head Consider incentivizing to improve accuracy 	Uncertainty elicitation method Sample based Interval	

3. Seeing new data

		 	,
⇒ Feedback			
			i
Veracity Deviat	ion Explanation		- i

4. Belief updating

What if I asked you to elicit people's beliefs for: How does family income predict children's college chances?

Methodology

Scoping and defining belief

Scoping: Stages of Belief

Belief formation

Belief elicitation

Seeing new data

Individual

Belief updating

Kim et. al, CHI 2019

Scoping and defining belief Collecting surveys from data journalism venues

Collecting surveys 14 examples

her position.		
Politics	Sports	

il guesses on		
ere were		
2018		
2018		
ote, but you may find that		
DE 3 SDLP 3		
Reset		

Scoping and defining belief Collecting surveys from data journalism venues Card sort Apply to use case (coding)

Card sort (5W+H framework)

Iteration 1

Iteration 2

Iteration 6

VIBE 1.0

Preliminary design space

Iteration 7

What

(the thing we are eliciting)

Elicitation design considerations

VIBE 1.0 Contextual considerations

When

(the stage of the belief process that we elicit)

VIBE 1.0 Elicitation design considerations

Based on Prior beliefs

Based on Updated beliefs

Scoping and defining belief **Collecting surveys from data journalism venues** Card sort Iterate≈7 Apply to use case (coding)

Feedback from experts

Collecting surveys from data journalism venues

Formative Study

Feedback from experts

5 participants

- 2 data visualization experts
- 2 data journalists
- 1 user experience designer

Goals

1. Assess the utility of current version of design space

2. Collect feedback to revise design space

\bigcirc **TASK 1** Design *without* VIBE 1.0

Create a system that helps people learn about their food choices impacting climate change

or

Create a system to learn if people know America's geography

\bigcirc TASK 2 Design with VIBE 1.0

How do Americans feel about guns?

or

How do socio-economic factors affect higher education for Americans?

Feedback

"It is a comprehensive framework. I would have missed out on several design considerations in my usual design process."

"The contextual considerations were a good anchor to ask questions about the problem space."

Feedback

1. Doesn't help with scoping the problem space
 Added key assumption of starting with a dataset

2. Visually overwhelming, and not self-explanatory
 Showed design considerations within the stages of belief

Insights from expert feedback Former scope

Belief formation Belief elicitation Seeing new data Belief updating

Insights from expert feedback Updated scope

Belief formation Belief elicitation Seeing new data Belief updating

Final design space

VIBE 2.0

1. Belief formation

2. Belief elicitation

ser 🤅	$ i \in \mathbf{Why}$ some example motivations		
	To promote reflection		
	 To personalize vis based on beliefs 		
	— To help users concretize their beliefs		
	 To compare with data or others' beliefs 		
Domoin	To educate To explore what-if scenarios		
Domain			
. (Dataset source		
liefs	Social Ground Truth		
ting	\ominus How some example interface methods		
	- Interaction technique		
	Drawing Clicking Typing		
ma			
V	Dragging Hover/mouseover		
y	Zoom Slide Scrolling		
on			
	Bar chart Man Dio chart Imago		
	Dai chai tì Mapi Fie chai tì image		
	Scatterplot Likert scale Line chart		
	— Inference method		
	Direct/self-reported Indirect/inferred		
	Uncertainty elicitation method		
ental model for			
in their head ccuracy			
anation			
	1		

Contextual considerations

→ Data set

should have problem and data set fixed

Here's a simple question we'd like you to answer before you read further: Which of the nine maps below best describes what you think of as the heartland?

To help you get started: Do big cities belong in the heartland? (If not, choose a map with "holes" in it.) Does the heartland rigidly follow state lines? Does it venture south into Texas, or east into Pennsylvania? Choose one of the maps below.

Sorry, none of these do it for me.

Count my vote!

Feedback: social data

What the maps actually show, and what other Times readers thought

Interface considerations

\ominus What the thing we are eliciting	⊖ How some example interface
Parameter	- Visualization technique
— Point estimate	Bar chart Map Pie chart
Correlation Trend Extrema	Scatterplot Likert scale Line
Measure of central tendency	- Interaction technique
Binary Sample proportion	Drawing Clicking Typin
- Distribution	Dragging Hover/mouseover
Ranking	Zoom Slide Scrolling
Uncertainty Statistical Error Range	- Inference method
	Direct/self-reported Indirect/inf
 ☆ How to elicit truthful beliefs: Make the belief more salient in the user's memory e.g. show a picture 	Uncertainty elicitation method
 Make the mechanism match the mental model for how people represent their beliefs in their head Consider incentivizing to improve accuracy 	Sample based Interval

What

Measure of central tendency	Median value of hom
Extrema	Most expensive homes
Discrete distribution	Number of semesters taken to gradua
Continuous distribution	Age of graduating studen
Ranking	Rank order of graduating st

e pricing
in a district
ate from different majors
ts in a major
udents by GPA

How

Drag and drop these choices to rank the hardest graduate CS programs to get into.

What are the acceptance rates at these universities for their graduate CS program?

Guides for eliciting truthful beliefs

Make the mechanism match their mental model

Make the beliefs more salient in their memory

Consider incentivizing

Seeing new data

... **reached its lowest level since 2007**. The current rate is a stunning decline from the 9.3 percent in 2009, the year Mr. Obama took office.

How do existing articles fit into VIBE?

Coding the design space

0.833 Cohen's Kappa (high inter-rater reliability)

24-

18-

12-

6-

0.

Insights from coding Opportunities

Group and social beliefs

What Uncertainty

How Inferred beliefs

How to apply VIBE

You Draw It: How Family Income Predicts Children's College Chances

By GREGOR AISCH, AMANDA COX and KEVIN QUEALY MAY 28, 2015

How likely is it that children who grow up in very poor families go to college? How about children who grow up in very rich families?

We'd like you to **draw your guess** for every income level on the chart below.

If you think the chances of enrolling in college (or vocational school) are about the same for everyone, you should draw something like this: — . If you think the odds are especially harsh for children from the poorest families, but higher for middle- and higher-income children, your drawing would instead look like this: 🦯 . Or here is one for a situation in which chances level off after a certain income threshold: . Or for one that spikes — or dips — for the very richest.

When you've finished drawing, we'll compare your line to the reality for children born in the early 1980s, based on research by a team of economists. We've started you off with one free point: 58 percent of children who were born in the early 1980s and raised in median-income families enrolled in higher education by the time they were 21. One way or another, your chart should go through that point.

Time to draw!

Coding VIBE 1. Contextual considerations

Who

Minimum to moderate graphical and statistical expertise

Why

To educate

When

Prior beliefs

Dataset

Parents' income percentile vs children's educational attainment

Coding VIBE 2. Interface considerations

What

Parameter: Correlation	
	90%
	80%
How	70%
1. Vis technique: Line chart	60% 50%
2. Interaction technique:	40%
Drawing	30%
	20%

Draw your line on the chart below

Percent of children who attended college

10%

1st

I'm done

Coding VIBE	Percent of ch
3. Seeing new data	90%
	80%
Feedback	70%
1. Type: Deviation	60%
2. Source: Ground truth	50%
	40%
	30%
	20%
	10%
	1st

Poorest

ildren who attended college

Parents' income percentile

Thanks for drawing. Here's how you did:

- About 75 percent of people drew a more accurate picture of reality than you did.
- You correctly guessed that children from the very poorest families face tough odds in going to college – only about one in four do.
- You underestimated the chances of college enrollment for the very richest children. In reality, about 94 percent of children from America's richest families go to college. (You guessed around 44 percent.)

Coding VIBE 3. Seeing new data

Feedback

- **1. Type: Deviation**
- 2. Source: Social Data

In case you were wondering, here's a chart showing the aggregate choices of 78,022 other New York Times readers. (Remember, we gave you a free point at the 50th percentile, which explains why so many people were so accurate there.)

Parents' income percentile

Redesign using VIBE Iteration 1

Belief Elicitation

How Does Family Income Predict Children's College Chances?

What **Parameter: Correlation**

How

- **1. Visualization technique: Likert scale**
- 2. Interaction technique: Clicking

Redesign using VIBE Iteration 2

Belief Elicitation

How Does Family Income Predict Children's College Chances?

What **Parameter: Correlation**

How

- **1. Visualization technique: Continuous scale**
- 2. Interaction technique: Dragging

Redesign using VIBE Iteration 3

[Karduni et. al, TVCG 2020]

Who

High graphical and statistical expertise

What

Parameter: Correlation Uncertainty

How

- 1. Visualization technique: Line chart
- 2. Interaction technique: Hover + Click

Conclusion

Limitations & Future Work

Scope currently limited to data journalism

Can explore non-graphical modalities

the effectiveness of alternative elicitation techniques)

Future work required to be more prescriptive (i.e., to investigate

Summary

Described formative stages of VIBE, a design space for belief elicitation in data journalism

Demonstrated how 24 data journalism examples fit into the design space

Utilized VIBE to redesign an example article

Thank you