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SUMMARY

People are susceptible to a multitude of biases, including perceptual biases and illu-

sions; cognitive biases like confirmation bias or anchoring bias; and social biases like

racial or gender bias that are borne of cultural experiences and stereotypes. As humans

are an integral part of data analysis and decision making in many domains, their biases can

be injected into and even amplified by models and algorithms. This dissertation focuses on

developing a better understanding of the role of human biases in visual data analysis. It is

comprised of three high-level goals:

1. Define bias: We present four common perspectives on the term “bias” and describe

how they are relevant in the context of visual data analysis.

2. Detect bias: We introduce a set of computational bias metrics that, applied to user

interaction sequences in real-time, can be used to approximate bias in the user’s

analysis process.

3. Mitigate bias: We describe a design space of ways in which visualizations might be

modified to increase awareness of bias. We implement a system which integrates and

visualizes the bias metrics and show how it can increase awareness of bias.

xvii



CHAPTER 1

INTRODUCTION

1.1 Motivation

Machine learning is the tool of choice for solving many large-scale computational prob-

lems, including ranking, clustering, and predictive forecasting. While many problems can

benefit from machine learning, many still ultimately rely on human input, especially where

the consequences of a decision are high (e.g., criminal intelligence analysis) or where do-

main expertise is required (e.g., personal or corporate purchasing decisions). In such cases,

human-in-the-loop (HIL) [50] approaches to data analysis are required. One such solu-

tion is visual analytics. Visual analytic systems combine the complementary strengths of

humans and machines in what is often presumed to be an ideal combination [93, 175].

Machines offer superior computational power and working memory, while humans have

skilled perceptual capabilities and adaptive analytics [72]. Combining these sources of

skill and information, the human often bears to burden of making the ultimate decision.

Existing research in visualization has largely focused on understanding the power and

limitations of human perception as a primary motivator for the field as a whole [30, 98];

and more recently, there has been an increasing focus on building systems to address data

exploration and decision making needs [175]. However, in contrast to the work on per-

ception and system development, relatively little consideration has been given to the role

of cognition in visualization. Specifically, these HIL approaches have not often consid-

ered inherent limitations suffered by both parties (i.e., humans are biased and error-prone;

and machines require substantial training data and are susceptible to biased algorithms and

techniques). Yet, when appropriately balanced, visual analytic systems have the potential

to mitigate these shortcomings and indeed produce an ideal combination for many decision

1



RQ 1 
Bias Definition 
[DECISIVe ’17]

RQ 2 
Bias Detection 
[VAST ’17,  
Interact ’19, VIS ‘19]

RQ 3 
Bias Mitigation 
[VIS ’19, VIS ‘20]

k

Figure 1.1: The work in this dissertation, injected into HIL data analysis processes, can enable
better decisions. As the user interacts with a visual analytic system during the data analysis process,
their interactions are recorded and used as a proxy for understanding their cognitive state (including
biases). This information then informs mitigation strategies that alter the visualization to make the
user aware of their biases and ultimately support better decision making.

making contexts. Thus, it is the goal of this dissertation to consider the role of human

bias in visual data analysis.

My approach is three-fold (Figure 1.1): first, to define the overloaded term “bias” in the

context of visual analytic systems; second, to develop techniques that can characterize or

detect a person’s biases in real-time during the process of visual data analysis; and third, to

design systems that can mitigate bias by increasing users’ awareness to facilitate improved

decision making.

1.2 Dissertation Overview

Given the mulitiplicity of the term “bias”, I first define in which contexts the term is rele-

vant in the domain of visual analytics (Chapter 3). The term is frequently used in cognitive

2
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PART I: DEFINING BIAS IN VISUALIZATION (CHAPTER 3)
§Four Perspectives on Human Bias in Visual Analytics

Emily Wall, Leslie Blaha, Celeste Paul, Kris Cook, and Alex Endert. DE-
CISIVe: Workshop on Dealing with Cognitive Biases in Visualizations (at
InfoVis’17), 2017.

§Four Perspectives on Human Bias in Visual Analytics

Emily Wall, Leslie Blaha, Celeste Paul, Kris Cook, and Alex Endert. Cogni-
tive Biases in Visualizations, Springer, 2018, pp. 29–42.

PART II: DETECTING BIAS IN VISUALIZATION (CHAPTER 4)
§Warning, Bias May Occur: A Proposed Approach to Detecting
Cognitive Bias in Interactive Visual Analytics

Emily Wall, Leslie Blaha, Lyndsey Franklin, and Alex Endert. IEEE Visual
Analytics Science and Technology (VAST), 2017.

§A Formative Study of Interactive Bias Metrics in Visual Ana-
lytics Using Anchoring Bias

Emily Wall, Leslie Blaha, Celeste Paul, and Alex Endert. Proceedings of the
17th IFIP TC 13 International Conference on Human-Computer Interaction
(INTERACT’19), 2019.

§A Markov Model of Users’ Interactive Behavior in Scatterplots

Emily Wall, Arup Arcalgud, Kuhu Gupta, and Andrew Jo. IEEE Information
Visualization (VIS) Short Papers, 2019.

PART III: MITIGATING BIAS IN VISUALIZATION (CHAPTER 5)
§Toward a Design Space for Mitigating Cognitive Bias in Vis

Emily Wall, John Stasko, and Alex Endert. IEEE Information Visualization
(VIS) Short Papers, 2019.

§Left, Right, and Gender: Visualizing Interaction Traces to Mit-
igate Social Biases

Emily Wall, Arpit Narechania, Jamal Paden, and Alex Endert. IEEE Infor-
mation Visualization (InfoVis), 2020 (under review)
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science to describe cognitive processing errors that result from the use of heuristics to make

decisions [90, 91, 182]. A highly publicized example of the potential impact of cognitive

bias in decision making is the Madrid Train Bombing Case, wherein an innocent person

was arrested due to latent fingerprint mis-identification by forensic analysts subject to con-

firmation bias [45, 164]. Another common use of the term is in social settings, in which

“bias” describes discriminatory stereotypes or preconceptions that impact people’s judg-

ment. For example, a laboratory experiment showed that employers perceived mothers to

have lower competence and recommended lower starting salary compared to women with

no children [34], while men were not penalized based on their parental status. To address

this multiplicity of definitions, I present four perspectives on human bias that are particu-

larly relevant in the context of visual analytics. This work was published at the DECISIVe

workshop at IEEE VIS in 2017 [192] and later adapted as a book chapter in a book title

Cognitive Biases in Visualization [193].

Given an understanding of which types of bias are relevant in visual analytics, my ap-

proach is to next computationally characterize or detect bias in real-time during the analy-

sis process (Chapter 4). Combining computational approaches with human perception and

sensemaking, visual analytic systems are increasingly used to perform data analysis in the

digital world. These systems afford a new opportunity with respect to bias detection, by

providing a new way to track and measure a person’s decision making process: via user

interaction. Interactions mark the paths of exploratory data analysis, providing insight into

a person’s reasoning and decision making processes [127, 145]. This information can, in

turn, be used to characterize an analyst’s decision making process from the perspective of

bias toward specific parts of the data or system. As bias steers users’ cognitive processes,

it also steers users’ behavior through interactions in visual analytic systems and thus the

underlying models as well. In particular, I argue that when data analysis is supported by

visual analytic tools, analysts’ biases influence their data exploration in ways that are mea-

surable through their interactions with the data. This presents an opportunity to leverage
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user interactions to computationally detect and assess mental pitfalls in real-time during the

analysis process. As a result, I present the formulation of two types of computational bias

metrics (coverage and distribution), each applied to three components of data and visual-

ization (data points, attributes, and model parameters). This work was published at VAST

in 2017 [191]. I validated the metrics through a formative study assessing anchoring bias

in a paper published at INTERACT in 2019 [190]. I also demonstrated how the metrics can

be further refined by accounting for how the proximity of nearby data points will influence

unbiased user behavior in a short paper published at IEEE VIS in 2019 [189].

Lastly, given the ability to characterize how an analyst is biased in real-time, I show how

to leverage that information to mitigate bias in the decision making process (Chapter 5). I

present a design space of considerations for building visualizations that put cognition on the

forefront, published as a short paper at IEEE VIS in 2019 [196]. Systems can elevate the

importance of supporting effective cognition starting with the early ideation of visualization

interfaces. I implemented one such system that mitigates bias by showing users traces of

their previous interactions and demonstrated its effectiveness toward increasing awareness

of bias in a user study about political decision making using the visualization. This work is

currently under review [195].

The outline of this dissertation and summary of publications can be found in Table 1.1.

1.3 Research Impact

Given the increasing popularity of HIL solutions for data analysis and decision making, it

is imperative to assess the impact of human bias in the process. Human biases (including

cognitive errors, social stereotypes, etc.) can be propagated to or even amplified by under-

lying computational models. A recent example that showcases the potential consequences

of human bias in systems is the AI chatbot, Tay [4, 106]. The artificial intelligence was

intended to be a friendly chatbot that appealed to young adults. The underlying model was

continually trained by incoming tweets, causing Tay to tweet increasingly racist and misog-
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ynistic messages shortly after going live. While a vulnerability in Tay was exploited, the

chatbot nonetheless conveys what can happen when human bias is introduced unchecked

into a system.

Hence, human bias can be injected into and amplified by algorithms. When people use

such algorithms to make important decisions, this can carry heavy consequences, reinforc-

ing biases and stereotypes and ultimately producing an echo chamber. For instance, many

courts in the criminal justice system utilize automated algorithms to help judges make

decisions about pre-trial release, parole, sentencing, and so on by predicting criminals’

likelihood of recidivism, or recommitting a crime [9]. However, recent analysis has shown

that these algorithms exhibit racial bias: often incorrectly predicting black defendants as

high-risk, while incorrectly predicting white defendants as low-risk.

An awareness of these potential risks will help us develop better systems, and ultimately

foster better data-driven decisions. The work presented in this dissertation will enable a new

class of visualization tools that are designed not just to combine humans and machines, but

to do so in thoughtful consideration of supporting effective cognition and decision making.

Future systems will continue to leverage the strengths of both humans and machines, while

incorporating additional measures to help guard against the limitations and biases of each.

1.4 Thesis Statement and Research Questions

Thesis Statement. Human bias has a prevalent impact on data analysis and decision mak-

ing, including the way our visual system biases our perception, the way we utilize cognitive

“shortcuts” to make quicker judgments, and the way our judgment is colored by stereotypes

and prejudices ingrained in us through our social experiences. However, the process of vi-

sual data analysis affords a new opportunity in the detection and mitigation of human bias,

namely through the use of user interaction. User interaction can serve as a rough approx-

imation of a user’s cognitive state during the process of visual data analysis. Hence, the

goal of this dissertation is to (1) define bias in the context of visual data analysis, (2) for-
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mulate computational metrics (herein referred to as bias metrics) that can be applied to

sequences of user interactions to characterize bias during visual data analysis, and (3) de-

sign and evaluate interventions that can increase bias awareness in users of visualization

systems. By increasing real-time awareness of bias, people can reflect on their behavior

and decision making and ultimately engage in a less-biased decision making process.

RQ 1 (Define). How do we define human bias in the context of visual analytics?

RQ 2 (Detect). How can human bias be characterized in real-time during the analysis

process?

RQ 2.1 (Bias Metric Formulation). By what metrics can user interaction

characterize bias in a person’s visual analysis process?

RQ 2.2 (Bias Metric Evaluation). Can bias metrics be used specifically to

capture anchoring bias?

RQ 2.3 (Bias Metric Refinement). How can the bias metrics be refined to

more accurately account for unbiased interactive behavior?

RQ 3 (Mitigate). Can bias metrics be used in visual analytic systems to mitigate bias?

RQ 3.1 (Mitigation Design Space). How can an interface visually commu-

nicate the characterization of a user’s bias?

RQ 3.2 (Mitigation Evaluation). How effective is the visual representation

of interaction traces in an interface toward mitigating biased decision making?
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CHAPTER 2

RELATED WORK

2.1 Studying the Analytic Process

Figure 2.1: The sensemaking loop, as realized by Pirolli and Card [139].

While there is a long history of studying perception in visualization, only recently have

researchers begun to more tightly integrate visualization with bodies of work in psychol-

ogy [1], cognitive modeling [132], and decision making [133]. Within this relatively young

space, several prevalent theories exist in the decision making and information processing

literature for describing aspects of the analytic process [16]. For example, the sensemaking

process was studied by Pirolli and Card [139]. Sensemaking is a term used in visual ana-

lytics to describe the process of learning about data through a visual interface; however, the
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term more generally refers to the process by which information is gathered, hypotheses are

formulated, evidence is extracted, and the hypotheses are evaluated. For HIL data analytics,

this is a process of exploring the data attributes together with the data model predictions and

attempting to explain any patterns against the conceptual models or hypotheses framing the

problems of interest.

Pirolli and Card [139] studied this process by performing a cognitive task analysis with

intelligence analysts. They proposed that the sensemaking process could be roughly de-

scribed by two loops: (1) a foraging loop to search for information, and (2) a sensemaking

loop to resolve an understanding of the information (Figure 2.1). Each of these higher-level

processes is then decomposed into a series of cognitive actions (e.g., the foraging loop in-

volves iteratively finding evidence from external data sources, compiling the evidence, and

then skimming it to look for relevant information). On the other hand, Klein et al. [97]

Figure 2.2: The data-frame model of sensemaking, as described by Klein et al [97].
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studied the sensemaking process as an iterative framing and re-framing of information.

They postulate that analysts begin with some frame of reference when examining data,

then continuously compare, refine, and create new frames throughout analysis to refine

their understanding of the data (Figure 2.2).

Figure 2.3: The human cognition model, as described by Green et al [72].

Other aspects of the analytic process have also been explored within the visualization

and visual analytics communities. Green et al., for example, describe how a human cogni-

tion model can be utilized in visual analytics [72]. Their model details the often-complex

relationship between human and computer for things like information discovery, creation

of new knowledge, and generation and analysis of hypotheses. They describe how tasks

and information should be distributed across humans and computers to leverage their com-

plementary strengths in visual analytics (Figure 2.3). Similarly, Sacha et al. [152] describe

the process of knowledge generation in visual analytics in terms of the related roles of the

human and computer. Their model consists of loops for knowledge generation, verification,

and exploration (Figure 2.4).

It is clear from these models that the process of learning and making inferences about

data can entail a number of cognitive and perceptual decisions, such as data identification,
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Figure 2.4: The knowledge generation model, as described by Sacha et al [152].

pattern detection, information discrimination, classification, and selection between discrete

options. Multiple types of bias may be introduced into the process by each type of decision,

and they may be compounded over the repeated analysis cycles.

2.2 Interaction in Visual Analytics

Interaction is paramount in visual analytics [138]. It advances a visualization from one

state to the next, allowing users to navigate and understand increasingly complex data.

Interaction facilitates human reasoning; it is the mechanism by which users go through

visual data analysis and is a vital part of the reasoning process in visual analytics [141].

Through interaction, users get acquainted with the data, form and revise hypotheses, and

generate questions [3]. It allows users to focus their attention in the presence of potentially

overwhelming information throughout their analysis [72].

As a key facilitator for human reasoning in visual analytics, interactions can be used

to better understand more than just analytic results. They also illuminate the process that

led to those results [127]. Typically, however, interaction is ephemeral; that is, once it

has triggered the appropriate system response, the information contained in the interaction

is discarded. In response to this loss of data, log analysis tools have been developed to

record and analyze interaction data. A prominent example is GlassBox [36], which captures

keyboard and mouse interactions in an interface. More recently, Nguyen et al. developed a

11



tool to visually group and analyze event sequences to identify common and unusual patterns

across many potential users [125].

Interaction data can be a rich source of information about the user. For example, Pusara

and Brodley [144] showed the uniqueness of the way users move the mouse by utilizing

a supervised learning approach to identify and authenticate which user was interacting.

Similarly, Brown et al. [20] showed that by analyzing the way users zoom and pan in a

visual search task for “finding Waldo,” they could learn about users’ task performance and

even some personality traits (e.g., locus of control, extraversion, and neuroticism).

Another common use for interaction data is analytic provenance. Analytic provenance

is a term used to describe the trajectory of a user’s analysis process, beyond the result-

ing choice or decision. Recent work has shown that user interaction can provide a powerful

means for understanding a user’s analytic provenance. For example, Dou et al. [44] showed

that by analyzing user interaction logs, they could infer a user’s reasoning process, includ-

ing recovering the findings (decisions made after discovery), strategies (means employed to

arrive at a finding), and methods (steps taken to implement a strategy and make a finding)

during the analytic process. Similarly, Gotz and Zhou [69] combined manual annotations

with automatically collected interaction data to identify a set of semantically meaningful

actions that can be used to infer about a user’s insight provenance.

Furthermore, interactive model-steering is a prevalent mixed-initiative [83] application

of user interaction. Systems “take initiative” and act on behalf of users by inferring an-

alytic model constraints from user interactions with a visualization. For example, Endert

et al. [49] enabled analysts to drag documents on a canvas to re-weight underlying ana-

lytic models of document similarity. Similarly, Brown et al. [19] developed a means of

learning a distance function based on the way users re-position data points on a scatter-

plot. Kim et al. [94] allowed users to drag points from a scatterplot into bins along either

side of an axis. In response, the system re-computed weights in a linear dimension re-

duction algorithm. This work was later extended to non-linear dimension reduction using
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sketch interactions [103]. Further, Wall et al. [194] computed an SVM model by inferring

constraints from users’ interactions dragging rows in a table for mixed-initiative ranking.

Thus, given prior work showing the power of interaction data for making inferences

about users’ cognitive state and intent, we hypothesize that user interactions can capture

behaviors which correspond to human bias during visual data analysis.

2.3 Bias in Cognitive, Perceptual, and Social Sciences

Decision making may be impacted by a multitude of human biases, including cognitive,

perceptual, and social biases. This dissertation focuses primarily on cognitive and social

biases, described in greater detail below; however, there is also an abundance of work de-

tailing visual perception (e.g., Gestalt principles [98], preatttentive processing theory [177])

and perceptual bias (e.g., selective perception [160], the Stroop effect [109]).

Prior work in cognitive psychology informs us that there are two key components to

understanding reasoning and decision making processes: (1) how information is organized

mentally (including perceptual, memory, and semantic organization); and (2) how that or-

ganization is aligned with decision boundaries or mapped to response criteria [107]. Cog-

nitive activities in both areas are susceptible to pitfalls that can result in misinterpretations

or erroneous decisions. For information organization processes, these pitfalls include per-

ceptual illusions and false memories. For decision making processes, these pitfalls are

collectively referred to as logical fallacies and cognitive biases. These various pitfalls arise

naturally from our perceptual and intuitive decision making processes. Therefore they

cannot be avoided or eliminated. However, we can be aware of their occurrence and use

deliberate reasoning processes to scrutinize and overcome the negative consequences of

biased cognition [90].

Some common examples of specific types of cognitive bias include things like confir-

mation bias, anchoring bias, and the availability heuristic. Confirmation bias describes the

tendency for people to search for evidence that confirms pre-existng hypotheses [126]. For
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example, an individual may look only for articles describing current events from a political

perspective that aligns with their own, while dismissing articles that disagree with their

political worldview. Anchoring bias, on the other hand, describes the mental error that

results from people’s tendency to rely too heavily on the initial information presented to

them [51]. For example, an individual looking to purchase a car will make an offer that

is largely affected by the initial price presented. They are unlikely to stray far from the

initial list price, even if the car is overpriced. Lastly, the availability heuristic describes the

way humans tend to rely more heavily on information that is most easily remembered or

most recent [181]. For example, if asked about the importance of safe driving education,

an individual who had a recent car accident will likely rate the importance higher. These

are just a few examples; however, there are more than a hundred types of cognitive bias

that have been described in the literature [42].

In Social Sciences, on the other hand, bias often refers to prejudices or stereotypes that

are socially relevant (e.g., racial bias, gender bias, age bias, etc). Social biases may be

influenced by cultural norms, individual experiences or personality variations, and they can

shape our decision making in a conscious or an implicit manner [73]. These biases can

have severe implications in a variety of decision making domains. For example, consider

the impact of racial bias in hiring. Researchers have found discrimination, either con-

scious or implicit, based on racial name trends [14], showing that equivalent resumes with

White names receive 50% more callbacks from job applications than resumes with African

American names. As a result, companies may lack a diverse workforce, which can have

implications on employee turnover, group isolation or cohesion, workplace stress, and so

on [148]. In the digital world, these biases can have far-reaching impacts. Combined with

Machine Learning, algorithms can learn and propagate things like racial or gender bias [64,

113].

While bias typically has a negative connotation, it is not always undesirable. At its

most basic level, bias can be thought of as a way to describe where in the decision process
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or organizational space people place their decision criteria. That is, where do people draw

the line between one response option versus another when performing some cognitive task.

From this perspective, there are multiple modeling approaches with a parameter quantify-

ing bias for a given task or decision process. Models of perceptual organization, such as the

theory of signal detection [70, 71, 110] or the similarity choice axiom [108, 140], use pro-

portions of correct and incorrect responses to describe performance in terms of perceptual

discriminability and decision boundary bias. Stochastic decision making models of choice

behavior use proportions of response choices and response speeds to capture bias as a rela-

tionship between the speed of mental evidence accumulation and response thresholds [24,

147]. A commonality among these techniques for quantifying bias is that they rely on post-

experiment analysis of the decision making process. That is, the models for bias are based

on the product of a user’s cognitive operations. This places a strong constraint on the use

of these approaches to situations wherein we have complete sets of decisions.

From this body of related work, we learn that while product-based analyses for detect-

ing human bias exist, they are limited. Specifically, they are not suited for making people

aware of their potential biases during the analysis process. Thus, distinct from methods for

detecting bias from the product of decision making, we are motivated to establish methods

to detect cognitive bias during the interactive exploration process, inferred through user in-

teraction over the course of an analytic task. Based on prior work described in Section 2.2,

we conceptualize interaction in visual analytic systems as a direct capture of the reasoning

process used during data analysis. In this way, user interactions constitute a novel set of

measurable behaviors that could be used to study and model logical fallacies and cognitive

biases in the analytic process [179, 182]. Our assumptions are consistent with the recent

efforts to use hand, mouse, or eye tracking trajectories to model continuous cognition,

which have shown that the shapes of movement across a computer interface reflect mental

organization and biases throughout the whole response process [99, 162, 163].
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2.4 Bias in Visual Analytics

The topic of bias in visual analytics has recently garnered increasing attention. Several

recent works have begun to organize and formalize the types of bias relevant in the visu-

alization and visual analytic domains [35, 184, 192]. Perhaps most extensively, Dimara et

al. [42] categorized 154 types of cognitive bias into 7 categories of a task-based taxonomy

for information visualization. The categories included biases associated with estimation

tasks, decision tasks, hypothesis assessment tasks, causal attribution tasks, recall tasks,

opinion reporting tasks, and a miscellaneous “other” category.

Several researchers have addressed modeling of visualization history [78] and process,

including the development of metrics associated with depth and breadth of analysis [88],

as well as exploration uniqueness and pacing [54]. Others have explored the manifestation

of a specific type of bias in the context of information visualization or visual analytics.

For example, Gotz et al. [68] addressed the issue of selection bias in examining healthcare

data. Because many attributes in high-dimensional datasets are often correlated (e.g., height

and weight in certain datasets), selection bias in healthcare data can be a prevalent issue.

Analysts may be unaware of the ways they have unintentionally biased the selection of

data they are examining. Hence, Gotz et al. proposed an approach to quantify and visualize

unseen selection bias.

Dimara et al. [41] examined a different bias, the attraction effect, in information visual-

ization. The attraction effect describes the phenomenon where a person’s decision between

two alternatives is altered by the introduction of an irrelevant third option. By introducing

decoy options to visualizations, including tables and scatterplots, the attraction effect was

observed in the visualization domain. They further showed how this effect can be mitigated

using interaction by providing the capability to locally delete data points from interactive

visualizations before making a decision [40]. Valdez et al. [185] similarly showed the pres-

ence of bias in information visualization. In their sequence of experiments, they showed
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the presence of priming and anchoring effects. Given scatterplots as stimuli, they asked

participants to judge whether two classes of points were separable or not.

Perhaps most similar to the work described in this dissertation is work done by Cho et

al. [29], who replicated effects of anchoring bias in a visual analytic tool. As mentioned

above, anchoring bias is an over-reliance on a particular piece of information [51]; Cho

et al. demonstrated that people exhibit anchoring bias when utilizing visual information

sources. In their study, participants were tasked with predicting protest events by analyzing

Twitter data. They elicited anchoring bias through priming, then analyzed user interaction

data to measure participants’ reliance on particular views in a multi-view system through

post-experiment metrics (e.g., total proportion of time in each view). While we similarly

propose the assessment of bias through analysis of user interaction, we focus on real-time

assessment rather than post-experiment analyses.

2.5 Bias Mitigation Strategies

Prior work broadly categorized bias mitigation strategies as either training interventions or

procedural interventions [100]. We incorporate these strategies and others in two high-level

categories of mitigation strategies: a priori and real-time, according to when the technique

is employed with respect to the analysis process. Developing a successful strategy for miti-

gating human bias in mixed-initiative visual analytic systems depends on identifying when

and how each of the following strategies might be employed with positive outcomes [63].

There have been varying degrees of past success addressing bias in the analytics process,

which we describe in greater detail below.

2.5.1 A Priori Bias Mitigation

A priori bias mitigation strategies occur before the analysis process, often in the form of

educational training that may examine past errors to inform future decision making. A

number of attempts have been made to mitigate bias in the domain of intelligence analysis,
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including training courses, videos, and reading material. While the goal is to promote

informed decision making by the analyst leading to a shift in user behavior, these techniques

have not consistently proven to be effective. As articulated by Heuer:

“Cognitive biases are similar to optical illusions in that the error remains

compelling even when one is fully aware of its nature. Awareness of the bias,

by itself, does not produce a more accurate perception” [79].

Serious games provided a more effective alternative to traditional means of bias train-

ing [15, 46, 57, 122, 169]. These techniques educated analysts about cognitive biases, but

nonetheless did little to mitigate negative effects when biases inevitably occurred in the

analytic process. They reinforce that an analyst must be proactive using feedback to adjust

their behaviors to mitigate the negative effects of bias.

2.5.2 Real-Time Bias Mitigation

If biased decision making processes can be assessed and measured in real-time, bias mit-

igation strategies can do more than simply educate analysts beforehand. Real-time bias

mitigation strategies have the potential to intervene at a more effective time. Though many

of the techniques described below have not previously been used explicitly for bias mitiga-

tion, we draw inspiration from techniques we believe will encourage thoughtful reflection

on people’s decisions and analytic processes.

Real-time bias detection opens up many questions surrounding how to most effectively

mitigate the negative effects of cognitive bias: How should the system inform the user when

bias is detected? When and at what frequency should the system notify the user of bias or

take initiative to intervene? To what extent should the system act on behalf of the user when

bias is detected? There is a rich space to be explored to understand the ways of intervening

in biased decision making processes.

Non-Technological Strategies. One approach for mitigating bias in real-time is the use

of non-technological strategies, including structured externalized processes, or structured

18



analytic techniques [80]. Perhaps the most known and accepted is Analysis of Competing

Hypotheses (ACH) [79]. ACH is a conscious tactic that can be used during the analytic

process to evaluate the likelihood of multiple hypotheses in an unbiased way. ACH creates

a framework for analysts to assess the relevance of each piece of evidence for multiple

hypotheses, and systematically eliminate less compelling hypotheses until a single most

likely hypothesis remains. While an effective analytic tool, ACH is a time-consuming

process not always used in practice.

Similarly, “consider the opposite” decision making strategies make a thoughtful reflec-

tion of evidence for the alternative hypotheses a structured part of the decision making

process. This has shown promise to reduce some biases, including overconfidence, hind-

sight, and anchoring [10, 123]. However, these procedural thinking strategies come at

the cost of potential cognitive overload, which can ultimately amplify some biases [155].

Herein, we focus on machine-assisted strategies that can lighten the cognitive burden of

bias mitigation.

Increasing User Awareness. We posit that there are many ways visualization and visual

analytic tools can mitigate bias in real-time by simply increasing the user’s awareness of

their process. For example, Dimara et al. [40] observed that highlighting points in a scatter-

plot that fall on the Pareto front led to a lower susceptibility to the attraction effect. While

Dimara et al. [40] increased awareness in static scatterplots, we are interested in mitigation

strategies in interactive settings. One approach could be to characterize the analysis process

and alert the user of detected biases in real-time in the form of notifications. There is a rich

space of prior work around notifications, including the tradeoffs of push v. pull [21, 114],

the effects of timing and interruptions [2, 37], and so on. Such work can inform the design

of notification systems for increasing user awareness of biased analytic processes.

Other researchers have tried to raise users’ awareness of their analytic process by visu-

alizing analytic provenance or coverage of the possible exploration space [11, 43, 89, 197].

With such feedback, users tended to explore more data [53], make more unique discover-
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ies [197], and show greater search breadth without sacrificing depth [156]. Thus, visual

characterization of the analytic process has potential to mitigate bias by altering a user’s

exploration.

Collaborative Mitigation. Feedback about biased behaviors can be given to a third party

agent (e.g., a human teammate or a supervisor) to leverage “wisdom of crowds” [112, 168]

to cancel out the noise of potentially sub-optimal individual decisions [82, 143]. This strat-

egy could prove useful in collaborative analytic settings. For example, analysts teaming on

a project may be alerted to each other’s biased behaviors, to ensure they cross-validate each

other’s work. In this case, prior work on fostering awareness in collaborative settings can

be informative [11, 12, 13, 75, 76, 171].

Machine Initiative. Mixed-initiative [83] visual analytic tools provide a unique opportu-

nity for bias mitigation. That is, the machine could operate as an unbiased collaborator that

can act on behalf of the user, or take initiative, to mitigate biased analysis processes. Ma-

chine feedback supports adaptive systems or other machine-based cognitive augmentations

that are responsive to the user’s state. Some mixed-initiative efforts have already begun

to integrate visual analytic recommendations based on user interest or semantic interac-

tions [49]. Gladisch and colleagues [67] even suggest using the notion of interest through

user interactions to penalize users or down-weight some recommendations to guide the user

to other parts of the data space. This is one way in which mixed-initiative systems can steer

users around bias-related pitfalls.

Mitigation through Interface and Interaction Design. Law and Basole [104] describe

interface design considerations for encouraging more broad data exploration as a means

for mitigating some biases. Design considerations include what constitutes a unit of explo-

ration (i.e., to track breadth of exploration across data points or dimensions), the distinction

between user- and system-driven exploration (i.e., to focus on showing users meaningful

information about their own analytic process or the system’s computational assumptions),
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and the alternatives of related and systemic exploration (i.e., whether the expansion of

information is driven by the user or not). They demonstrate a prototype tool for social

network analysis that considers these dimensions in the design of the interface for encour-

aging broad exploration of the data. Similarly, Sukumar and Metoyer [166] present design

considerations for bias mitigation in the context of the college admissions process. Their

guidelines include a broad focus on tasks like easing cognitive load, supporting sensemak-

ing, decorrelating error (i.e., not viewing students’ applications as a whole), mobilizing

system 2 (i.e., encouraging thoughtful consideration of application content over quick in-

tuitive judgments), and combining formulas with intuition (i.e., to limit the drawbacks of

either in isolation).

A recent study by Dimara et al. [40] showed that interaction design can itself serve to

mitigate bias (namely, the attraction effect). The attraction effect describes the phenomenon

where a person’s decision between two alternatives is altered by the introduction of an

irrelevant third option. In a decision making task using scatterplots, users were required

to utilize a process of elimination, clicking to remove individual points on the scatterplot,

until a single point remained as their final decision. With this interaction design, researchers

observed a reduction in the attraction effect compared to participants who simply clicked on

their final decision point (without first eliminating others). Hence, considering alternative

interaction designs for a task could serve as an effective intervention for mitigating biased

decision making.

2.6 Expertise and Uncertainty

Visual data analysis involves a number of complex cognitive processes, influenced by fac-

tors such as bias, expertise, and uncertainty. This dissertation focuses on bias; however,

expertise and uncertainty are inextricably connected concepts, relating to and feeding into

specific types of bias. Hence, a brief review of expertise and uncertainty provides additional

context for the assessment of a user’s cognitive state.

21



Expertise can be considered from many perspectives, including visualization literacy or

expertise, domain expertise, and so on, all of which can impact the way people approach

a task. For example, Xiong et al. showed that prior knowledge and beliefs about the data

influence the way people interpret data and communicate with visualizations (i.e., the curse

of knowledge) [199]. On the other hand, consider basic visualization literacy. Variations

of literacy in visualization have been examined under many different names, including vi-

sualization literacy [18], visual information literacy [172], data literacy [149], graph com-

prehension [60], and graphicacy [188]. Boy et al., for instance, define visualization literacy

as “the ability to confidently use a given data visualization to translate questions specified

in the data domain into visual queries in the visual domain, as well as interpreting visual

patterns in the visual domain as properties in the data domain” [18]. Visualization literacy,

and data literacy more broadly, can have a big impact on the way people analyze data and

make decisions using visualizations, influencing the views they rely on, the interactions

they perform, and as a result, the distribution of their attention across the data.

Literacy and expertise, or lack thereof, ultimately influences individuals’ susceptibil-

ity to specific types of bias (e.g., Dunning-Kruger Effect [101], wherein people who are

unskilled in an area will overestimate their competency). Furthermore, when visualization

literacy or expertise is low, people may be particularly susceptible to deceptive visualiza-

tion techniques [134]. While deception typically has a negative connotation, it is often

optimal to distort the presentation of data for some knowledge communication goals [32].

However, the vast majority of work on deception in visualization focuses on its malevolent

uses. Correll and Heer describe techniques including data manipulation, obfuscation, and

nudging, that may be used to deceive with visualizations, some of which even experts ap-

pear ill-equipped to identify [33]. O’Brien and Lauer showed that people are susceptible

to deceptive visualizations, even when paired with accurate explanatory text – highlighting

the importance of visualization literacy given people’s high reliance on visual representa-

tions of data [131]. However, these malevolent deceptions are not without hope. Recent

22



work has shown that metamorphic testing [157] of visualizations could be used to auto-

matically identify such deceptive visualizations, or “mirages” [117]. Szafir also proposed

design guidelines for visualization designers and developers to avoid common misleading

representations [170].

Another important influence on decision making is uncertainty. Work by Kim, Hull-

man, and colleagues has modeled the way people make decisions based on prior beliefs

(or biases) using a Bayesian cognitive model and studied the way different representa-

tions of uncertainty [85, 92] influence people’s “rational” choices [96]. Furthermore, they

demonstrate that people’s uncertainty about data trends leads to heavy reliance on social

influence [95]. Thus, creating visualizations that better support cognition will require a

more complete understanding of the concepts of bias, expertise, and uncertainty, and the

intricate ways they relate to or feed into one another.
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CHAPTER 3

DEFINING BIAS IN VISUALIZATION

To reach the ultimate goal of developing methods to detect and mitigate bias in visual an-

alytics, we first must understand what is meant by the term “bias.” Hence, this section

describes work that has been done in response to RQ 1 and has been published as a work-

shop paper [192] as well as a book chapter [193].

RQ 1: How do we define human bias in the context of visual analytics?

Cognitive, behavioral, and social sciences have described many ways bias can occur

in people’s analytic processes [97, 139, 152], decision-making strategies [20, 44], and

other behaviors. Motivated by the overloaded use of the term “bias” to describe different

models and concepts, we describe four different ways people tend to think about or refer to

human bias that are relevant in the context of visual analytics. These perspectives include

(1) bias as a cognitive processing error, (2) bias as a filter for information, (3) bias as

a preconception, and (4) bias as a model mechanism. These four perspectives are not

mutually exclusive; rather, they present different, potentially overlapping perspectives on

bias relevant in the context of visual analytics. Furthermore, as described in Chapter 2.3,

the measurement of bias according to each of these perspectives typically relies on the

products of cognition (e.g., final choice or decision) rather than measurable parts of the

process.

To more concretely discuss how bias can affect visual analytics, consider the following

example. Suppose Susan is using a visual analytic tool to explore possibilities for purchas-

ing a new home. She uses the tool to browse photos, explore different areas of the city,

and refine her understanding of what features of a home are important to her. From her

exploration, she intends to go view the homes in person and ultimately make a purchasing
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decision. Throughout the following sections, we will describe how each perspective on bias

can impact Susan’s process and visual analytics in general. For each perspective, we pro-

vide a brief description, present an example scenario, and discuss how these perspectives

inform and influence visual analytics.

3.1 Bias as a Cognitive Processing Error

3.1.1 Description

From heuristics and bias research, bias is an error resulting from an unconscious deviation

from rational behavior. Cognition is frequently conceptualized as a dual-process [27]. The

two processes are often termed “intuition” and “reason” [91], the former being respon-

sible for making quick, automatic decisions, and the latter being responsible for making

deliberate, reflective decisions. It is one’s quick judgments that are subject to errors.

Stanovich and West referred to the two cognitive processes as system 1 (intuition) and

system 2 (reason) [165]. In this analogy, system 1 is largely subconscious and prone to

making errors (bias), while system 2 is responsible for recognizing and correcting errors

through intentional deliberation. These types of errors result from shortcuts in cognition,

broadly referred to as heuristics [91]. Bias then is described as the method or mechanism

by which the error occurs. However, the process of heuristic decision making does not

always lead to errors; it usually facilitates fast decision making.

3.1.2 Example

From this perspective, there are dozens of types of bias. One such example is anchoring

bias [182], which refers to the tendency to be heavily reliant on an initial value or anchor. It

is analogous to a center of mass: people are unlikely to strongly deviate from their center.

In Susan’s home-buying scenario, she will likely be subject to anchoring bias during the

price negotiation of her purchase. That is, the home’s initial list price forms an anchor

point and will thus subconsciously impact the amount she is willing to offer. Susan’s offer
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for the home might have been very different had she made an offer given a different initial

list price. She might even pay more money for the same home due to the tendency not to

strongly deviate from the anchor point. Systems apprised of probable cognitive errors like

anchoring bias have the potential to help users make better decisions by guarding against

such errors, providing appropriate counterexamples, or by suggesting other ranges of data

values that a user might consider.

3.1.3 Relevance to Visual Analytics

Common heuristic errors include confirmation bias [126] which describes the way peo-

ple tend to accept confirmatory evidence of a pre-existing hypothesis and dismiss contrary

information. Another common error is availability bias [181], where people tend to rely

more heavily on information that is easily remembered (e.g., most recent). Similarly, the

attraction effect [84] describes the tendency for a decision to be influenced by an infe-

rior alternative. Collectively, these errors shape the way people search for and interpret

information. Recently, Dimara et al. [41] showed that the attraction effect is present in

users of information visualizations. Similarly, researchers have shown that priming and

anchoring effects can be replicated in visualizations and visual analytics [29, 185]. Hence,

bias impacts users outside of laboratory decision making studies and can lead to incorrect

decisions and inefficiencies in visual data analysis.

3.2 Bias as a Filter for Information

3.2.1 Description

Bias acts as a filter through which we manage and perceive information. The challenge

of information overload [119] motivates this analogy. Information overload, now com-

monly leveraged in consumer research to influence purchasing behavior, refers to a point

beyond people’s cognitive and perceptual limits where performance and decision making

suffer [111]. Under overload conditions, people selectively allocate attention and other
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mental resources to the tasks or information of highest priority. One’s filter or bias thus

determines what information is gathered and how sensory information is distinguished and

interpreted [61].

The literature on goal-directed attention and resource allocation posits that all percep-

tion is guided by top-down influences, such as the allocation of endogenous attention [47,

142, 176]. Top-down perception governs which sensory information is identified in a scene

based on goals. Bias does not make for a purely objective filter for information, however.

Heuer refers to perception as an “active” process that “constructs” reality [79]; this is in

contrast to a passive process that simply records reality. Similarly, obvious or important

information is sometimes filtered out. For example, in one classic selective perception

task, participants were shown video footage of people wearing either white or black shirts

passing a basketball. Participants were asked to count how many times white-shirt bas-

ketball players on a team passed the ball to each other [160]. Most participants count the

appropriate number of passes but about half fail to perceive a glaringly misfit player walk

across the court. The misfit player is in a black outfit, and is consequently treated as part

of the task that is selectively ignored while attention is focused on the white-shirt players.

In contrast to top-down perception, bottom-up perception refers to the way external factors

influence attention [150]. When there is a loud noise or someone says your name across

the room, you notice despite top-down attentional and perceptual focus. Visual attention

can be similarly grabbed by flashing, movement, or other visual cuing in a display.

3.2.2 Example

In our home-buying scenario, Susan may experience information overload [119] as she

explores homes on the market in a visual analytic tool. She might see hundreds of homes

available in the area, each with dozens of attributes. Thus, her filter or bias will govern

which information she perceives and which she dismisses. For example, she may only

select to view single-family homes, removing condominiums, town homes, and apartments
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from the visualization. If removed, some options that may be relevant to Susan’s other

search criteria will not be visibly available, though still in the underlying data and system.

The system may want to make some of that information known at an appropriate point

in the analytic process. By leveraging knowledge about people’s perceptual strengths and

limitations, mixed-initiative system could present information in ways that are easy for

users to understand and at a time when mental resources are available.

3.2.3 Relevance to Visual Analytics

A great deal of research in visual perception [183] has been leveraged by researchers in

information visualization and visual analytics to present information in ways that are most

perceptually accessible [52]. Preattentive processing theory [177], for example, describes

the nature and limits of visual information processing. In creating visual representations of

data, this is often used by designers as a guide to prevent overwhelming a user’s perceptual

limitations. Similarly, Gestalt principles [98] refer to the relationships inferred by the visual

system based on proximity, groupings, symmetry, etc. between visual elements. Thus,

understanding how people’s filters work can inform things like which visual widgets or

elements to place in close proximity to one another or which graph layout algorithm is

most appropriate. Indeed, Patterson et al. [136] listed supporting attention and user mental

models as some of the key visualization leverage points for design grounded in human

cognition.

3.3 Bias as a Preconception

3.3.1 Description

Analysts approach mixed-initiative systems bringing all their experiences and internal in-

fluences that unconsciously shape their approaches to the analysis process. This, in turn,

influences the ways they interact with systems. The consequence is that the user model

within the system, the analytic products, and provenance may be shaped by each individ-
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ual’s unconscious biases. These types of bias may seem to have little to do directly with

the task at hand. Yet, because they shape the person, there is a high likelihood they can

influence mixed-initiative sensemaking.

Unconscious biases arise in a number of ways. They derive from a person’s cultural

beliefs and traditions, which include their implicit assumptions and expectations regarding

stereotypes. Unconscious biases result from general self-confidence or self-esteem, as well

as comfort or familiarity level with the capabilities of a machine’s analytics and interface

functions. Related personality traits render some people more risk seeking or risk averse,

shaping how they push boundaries exploring a space of hypotheses or push the capabilities

of the computational system. These characteristics are thus seen as a source of individual

variability between people.

3.3.2 Example

Susan is avoiding listings for houses downtown in the city. Having lived in the suburbs

for many years, Susan assumes that neighborhoods near downtown have higher crime rates

and lower economic stability. She believes she should not make a housing investment there.

The availability of recent census results and police reports within the real estate analytic

tools enable Susan to explore her assumptions and refine her thinking. A mixed-initiative

system may detect her avoidance of downtown properties and could prompt her to challenge

her assumptions with the related data.

3.3.3 Relevance to Visual Analytics

Unconscious biases shape analysts’ assumptions and stereotypes about analytical tools and

mixed-initiative aids, and they shape assumptions and stereotypes about the data / analytical

subjects (e.g., presumed reliability or trustworthiness of certain sources). Implicit attitudes

shape the formulation of hypotheses and the questions about the assumptions and the con-

sequences of those hypotheses. Klein and colleagues posited that the entire sensemaking
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process begins with a practitioner framing the problem, and the selected framework, how-

ever minimal, then shapes what an analyst thinks about and what structure they think with

[97]. Frames reflect a perspective an analyst takes to make sense of data or to solve a prob-

lem. As implicit attitudes shape an analyst’s perspective, they shape the analyst’s frames,

thereby shaping the sensemaking process.

Use of the system is also influenced by the level of trust the user places in computa-

tional systems, which is shaped by the degree of machine autonomy the system has together

with its transparency about its capabilities and uncertainty [105]. Some people are more

pre-disposed to trust computational systems. This would manifest in differences in the de-

gree of reliance an analyst places on the machine’s results or recommendations. Generally,

the strategy for addressing differences in reliance and trust is to find a means of trust cal-

ibration, or helping the user to adjust expectations about machine capabilities [81]. It is

possible that the preconceived biases that might play into the analytic process could influ-

ence trust and reliance on the visual analytic system. Consequently, the mixed-initiative

interface should be providing cues to enable the user to calibrate their trust in the machine

as well.

Expertise, derived from general experience as well as explicit training, further shapes

the analytical process and is shaped by implicit biases. Expertise can impact expectations

and perceptions of a mixed-initiative system and the interpretations of the information vi-

sualizations under consideration. Expertise in forensic analytics, for example, may make

analysts more conservative in their judgments, shaped in part by their expert understanding

of the consequences of their decisions. Expertise often also provides the user with a better

understanding of the limitations of the analytical tools or data collection practices, which

can shape more nuanced interpretations during the analysis process.

Because they are built to record a number of different types of user behaviors through-

out the analysis process, mixed-initiative systems may be particularly well-positioned to

aid in the assessment of unconscious biases of analysts. We argue that it is possible for a
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mixed-initiative system to capture and integrate unconscious, preconception biases into an-

alytics through the user model and track those biases through user interactions and changes

in the mental model over time.

3.4 Bias as a Model Mechanism

3.4.1 Description

Bias is the term often used in mathematical psychology to describe a decision boundary or

a tendency toward one response option over another. Cognitive architectures or models are

mathematical and computational approaches to formally describe mechanisms supporting

perception, memory, decision making, and other cognitive functions [23]. A number of

these models include a mechanism explicitly called bias, or they use a combination of

mechanisms to capture the ways the aforementioned types of bias manifest in measurable

behaviors, like response choice and speed. Models with explicit bias mechanisms often

contain a bias parameter or measure bias as a relationship between parameters. Here, we

will review two major perspectives on bias as a model mechanism, one which formalizes

bias within models of mental organization and another which formalizes bias in models

of decision making dynamics. Both types of behavior are necessary in visual analytics, as

analysts work through their sensemaking processes of organizing information and weighing

evidence against potential hypotheses and interpretations. As interactive visual analytic

systems aid in the externalization of analysts’ mental models, model mechanisms can help

us interpret how bias is reflected in the patterns and dynamics of their interactions.

One approach to modeling bias addresses the question: where do people mentally

“draw the line” between one response option and another when performing an analytic

task? Many models of perceptual choice or organization describe information representa-

tion with two mechanisms [98, 183]. One mechanism is spatial organization that groups

pieces of information by similarity/proximity; like objects are close in space or clustered to-

gether. The second mechanism is at least one boundary that divides the space into response
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regions; object labels or choices are made according to the response regions defined by

the boundary. Examples of these models include the theory of signal detection for finding

signals in noise [70, 110] or categorization models [108, 129] for clustering and labeling

groups of objects. Bias in these models is based on comparison to unbiased sensory input.

Bias is described by a weighting of boundary regions; if regions are not equally weighted,

the model represents bias toward certain responses. Other models might capture bias as a

feature weighting, representing how much the respondent emphasized certain features over

others.

Another major use of bias parameters is found in models of information processing

dynamics behind the time to make a decision. These dynamic decision models characterize

the choice between two options as a stochastic process whereby information about the

options is incrementally sampled and accumulated, often in a random walk fashion, until

some threshold is reached for one of the response options [24]. The evidence accumulation

process governs a person’s response speed and is influenced by the salience and complexity

of the choice options. Bias in these models is captured by the relationship between the

starting value of the evidence accumulators and the response thresholds. If the accumulator

starts at zero, then the process is not biased; all responses are equally likely. If the bias

parameter is non-zero, then the process is biased toward the response threshold closer to

the bias value. This bias mechanism captures behaviors wherein some responses, correct

or erroneous, are selected more frequently or more quickly than others.

3.4.2 Example

Homes for sale are comprised of a large number of attributes drawn from real estate de-

scriptions. Susan is likely to have certain features along which she is organizing the options

available on the market, such as number of bedrooms, number of bathrooms, basement

square footage, and proximity to schools. This forms a four-dimensional mental repre-

sentation space into which the houses can be organized. If she is weighing numbers of
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bedrooms and bathrooms equally, we can describe her decision bias as equidistant from the

category centroids or close to zero. However, Susan has strong opinions about basement

square footage and proximity to schools. Based on how she organizes houses into desirable

and undesirable categories, we might use models to infer that she is biased toward liking

houses that are within a 10 minute walk to schools but have small basements less than

400 square feet. A system aware of these preferences might help quickly reorganize large

amounts of data into a representation consistent with the user’s mental representation.

3.4.3 Relevance to Visual Analytics

Visual analytic systems designed to support data exploration capture an externalization of

the analyst’s mental organization in the form of interaction [86, 87]. By leveraging ana-

lytic provenance [127], researchers can better understand users’ strategies [44], processes

that led to insights [69], and ultimately better support the sensemaking process [200]. Dif-

ferent spatial layouts and data encodings (including colors, shapes, etc.) reflect mental

organization patterns, including perception of similarity between data points. Characteriz-

ing the biases in this mental organization process provides a quantifiable way to describe

the information representation space and decision boundaries. For example, we can use the

perceptual organization models to infer if the analyst is biased toward some data attributes

or certain clusters/labels. We could use the sequential sampling model to identify biases in

how analysts are weighing the relative utility or value of a piece of evidence.

From the perspective that bias is a model mechanism, we can also formally character-

ize bias from the other three perspectives described in Sections 3.1– 3.3. Although these

models are implemented in a way that is rather agnostic to errors in reasoning, the bias pa-

rameters enable inferences about how errors from decision heuristics occur. For example,

anchoring bias would be captured as a bias toward one of the response thresholds close to

the anchor value in a model of information accumulation or decision dynamics. Bias as

a filter can be formalized as a bias node or parameter in a neural network or hierarchical
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model of vision [178]. This would reflect the way information might be differently sam-

pled by an analyst based on the goal-related task they are performing. Preconception bias

can be included in models as latent factors or correlates of measurable behaviors. As latent

factors, biases such as gender or race stereotypes can modulate other mechanisms in the

mental models, such as the organization of similar objects or response preferences [186].

3.5 Discussion

These four perspectives of bias illustrate the diversity in how people process information

and form a model of the world: (1) bias as a cognitive processing error, (2) bias as a filter for

information, (3) bias as a preconception, and (4) bias as a model mechanism. Each are valid

perspectives that greatly shape how bias is framed in visual analytics research. However,

the multiplicity in definitions sometimes leads to challenges in sharing and collaboration

due to a lack of common ground. One goal of this work is to present these definitions,

so that we as a community have a starting point for discussing how these perspectives fit

within the visual analytics research agenda. Additionally, when considering all of these

perspectives, the space in which to study bias in visual analytics increases dramatically.

This leads to several open challenges and opportunities for the visual analytics community.

3.5.1 Does bias endanger mixed-initiative visual analytics?

Visual analytic applications continue to model users and adapt interfaces, visualizations,

and analytic models based on their interactions. However, how do such systems differen-

tiate between valuable subject matter expertise (which should be incorporated), and biased

input? Without such techniques for identifying and guarding against biased input, applica-

tions run the risk of showing users biased views of their data that correspond to what they

want to use, rather than truthful representations of the information.

For example, in model-steering situations, user input guides analytic models to focus

on salient aspects of the domain being studied [48]. Without guarding against potentially
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biased user input, the system may overfit the model to the biased input. The result may be

a system that shows users the views they want to see, but is essentially an “echo chamber”

for their own biases.

One approach for making the distinction between valuable domain expertise and bi-

ased input might be to consider the consistency or inconsistency of a user’s interaction

sequences. More sophisticated approaches could be derived by studying the differences in

interaction sequences of domain experts and novices who are biased. It may also be useful

to study large groups of users, expert or novice, modeling their processes and biases, to

provide additional context to the machine intelligence about ranges of typical and outlier

behaviors.

3.5.2 How to keep the machine “above the bias”?

Designing mixed-initiative visual analytic systems to reduce negative effects of biased user

input is an interesting and important line of research leveraging our bias classifications. As

noted by Friedman and colleagues, there are three types of bias that can influence computer

systems: pre-existing, technical, and emergent biases [58, 59]. Pre-existing bias arises

from the attitudes or societal norms/practices that the software designers might impart into

system designs. This is akin to our bias as a preconception perspective. Concerted efforts

can be made to address pre-existing bias throughout the visual analytics design process,

such as using the recent GenderMag method to address gender biases in interface designs

[22].

Technical biases are a consequence of technical considerations, such as choice of hard-

ware or algorithm. Computational technical biases are unique from the various definitions

of human bias we summarized herein. But because they will contribute to biases in mixed-

initiative system performance, careful technical choices should be made and appropriate

details should be made available to the user to facilitate informed interpretation of system

behaviors.
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Emergent biases arise from the use of a system, resulting from changing context or

knowledge in which a system is being used. Friedman argues that these are more difficult

to know in advance or even identify in practice [59]. Emergent biases are highly likely to

occur in mixed-initiative systems, particularly as the interface or algorithms are shaped by

any of the aforementioned biases that are influencing the user’s interactions. Theoretically,

the role of the machine is to be unbiased and to present a rational result based on clear

rules. However, there are limitations to this approach, namely the lack of tacit knowledge

and analytic context that cannot be easily modeled. This has led to the rise of user-driven

machine learning that goes beyond a “supervisory” role in training [7]. Yet, as soon as the

human is re-introduced into the system, the rationality of the machine is affected. How can

we judge when this human-machine teaming is succeeding or failing?

We propose that mixed-initiative systems are uniquely suited to aid in the identifica-

tion and mitigation of emergent biases, exactly because mixed-initiative systems reflect the

user’s analytic process. To do this then, we must be able to correctly interpret the user’s

biases as they are captured by the computational system. The four perspectives we have

outlined will help the bias interpretation process. Each provides a way to identify how that

source of bias plays out in the analytic process. To the degree that formal models are avail-

able for each bias perspective, those can be integrated into the system for more automated

interpretations.

3.5.3 Is bias good or bad?

The term bias tends to carry a negative connotation. It is perceived as something that we

should strive to eradicate. However, bias is not always bad. Each of the four perspectives

on bias differs in how it impacts cognitive and perceptual processes.

From the perspective that bias is an error, we should work to minimize it; however,

it should not be confused with the heuristic decision making processes that lead to such

biases. We emphasize that heuristic decision making is not inherently bad. It usually results
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in more efficient decision making. Thus, it is imperative that in attempting to mitigate bias

as an error, we do not unduly limit heuristic decision making processes in general.

From the perspective that bias is a model mechanism, it is neither good nor bad. In this

case, it is an objective characterization of the decision making process. While the decision

making process itself may be suboptimal or erroneous (as is the case of bias as an error),

here bias just describes the boundary between response options.

From the perspective that bias is a filter and the perspective that bias is a preconception,

it can be both beneficial and detrimental depending on circumstances. Perceptual filters

prevent us from experiencing information overload. However, they can also cause us to

inadvertently filter out information relevant to a given decision. Unconscious biases like

innate risk-aversion tendencies can help us to make deliberate, mindful decisions, but on

the other side of the spectrum can lead to impulsive high-risk decisions. Thus, because

different perspectives on bias vary widely in their potential benefits or risks, it is imperative

to thoughtfully define the perspective and scope considered for bias detection or mitigation

efforts.

3.6 Summary

In this section, we have addressed RQ 1 by describing four common perspectives on bias

that are relevant in the context of visual analytics, including (1) bias as a cognitive process-

ing error, (2) bias as a filter for information, (3) bias as a preconception, and (4) bias as a

model mechanism.
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CHAPTER 4

DETECTING BIAS IN VISUALIZATION

After defining bias in the context of visual analytics, the next high-level goal, RQ 2, in-

volves developing methods to characterize bias during the analysis process.

RQ 2: How can human bias be characterized in real-time during the anal-

ysis process?

This question is divided into three parts: defining bias metrics (Chapter 4.1), a formative

study to implement and validate the bias metrics (Chapter 4.2), and a study to refine the

bias metrics by better understanding what constitutes unbiased behavior (Chapter 4.3).

4.1 Characterizing Bias with Interactive Bias Metrics

This section focuses on the first sub-question of RQ 2. It describes work that has been done

in response to RQ 2.1 and has been published as a conference paper [191].

RQ 2.1: By what metrics can user interaction characterize bias in a per-

son’s visual analysis process?

Visual analytics affords a novel mechanism for measuring and characterizing bias as a

result of its interactive nature. Interactions form an externalized record of users’ thought

processes. Interactive visual analytics supports guiding endogenous attention, creating and

organizing declarative memory cues, parsing and chunking information, aiding analogical

reasoning, and encouraging implicit learning [136]. Interactions mark the paths of ex-

ploratory data analysis, providing an opportunity to glean insight into a person’s reasoning

and decision making processes [127, 145].
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Hence, we hypothesize that when data analysis is supported by visual analytic tools,

analysts’ biases influence their data exploration in ways that are measurable through their

interactions with the data. This presents an opportunity to leverage user interactions to

detect and assess mental pitfalls in real time during the analysis process. While models

exist that incorporate measures of human bias, they rely on the final products of cognition

(e.g., a final choice decision). This does not allow for the real-time measurement of bias

in the decision making process. Instead, we propose that cognitive bias can be detected

earlier in an analysis process, using metrics applied to the user’s interactions.

In this section, we present theoretical foundations for quantifying indicators of human

bias in interactive visual analytic systems and propose six preliminary metrics. Here, we

adopt the perspective of bias as a model mechanism, as described in Chapter 3.4. These

metrics are based on the notions of coverage and distribution, targeting assessment of the

process by which users sample the data space. We propose a way to quantify interactions

and a naı̈ve baseline model for an unbiased analysis against which the metrics can be in-

terpreted. In this section, we conceptually apply these metrics to the detection of cognitive

biases (i.e., as described in Chapter 3.1); however, future sections describe how the metrics

can be used to detect other types of human bias.

4.1.1 Formalizing Cognitive Bias in Visual Analytics

In this section, we outline the ways cognitive bias may manifest in the analytic process and

discuss relationships between bias indicators and the proposed metrics.

Behavioral Indicators of Bias in Interaction

Cognitive bias is a consequence of heuristic decision making processes that allow people

to simplify complex problems and make more efficient judgments [91, 182]. A heuristic

is a “rule of thumb” for making an inference, or a strategic way in which information is

ignored to get to a decision faster [66]. Heuristics frequently ignore or subconsciously
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Table 4.1: Cognitive biases relevant to intelligence analysis [79] that produce the measur-
able behavioral indicators we focus on in this section.

Bias Description Interaction Manifestation

Vividness Crite-
rion

humans rely more heavily on in-
formation that is specific or per-
sonal than information that is ab-
stract or lacking in detail

e.g., analyst frequently returns
to / interacts with data points
that are rich in detail

Absence of Evi-
dence

humans tend to focus their atten-
tion on the information that is
present, ignoring other significant
pieces of evidence that may be
missing

e.g., analyst filters out a sub-
set of data, forgets about it, and
makes future decisions without
accounting for the missing data

Oversensitivity to
Consistency

humans tend to choose hypotheses
that encompass the largest subset
of evidence

e.g., analyst interacts almost ex-
clusively with data that sup-
ports the largest encompassing
hypothesis, dismissing other
data

Coping with Ev-
idence of Uncer-
tain Accuracy

humans tend to choose to accept or
reject a piece of evidence wholly
and seldom account for the proba-
bility of its accuracy

e.g., analyst filters out data that
supports a seemingly unlikely
hypothesis, thus fully rejecting
it

Persistence of Im-
pressions Based
on Discredited
Evidence

humans tend to continue to be-
lieve information even after it has
been discredited (also known as
the continued influence effect)

e.g., analyst continues to in-
teract with data supporting a
hypothesis that has been dis-
proved

weight certain types of information. As a subconscious cognitive process, heuristics also

play an integral role in visual analytics. Concerted efforts have been made to delineate the

cognitive biases to which analysts may be susceptible [79]. This provides a starting point

for understanding biases in the inference and sensemaking process.

There are dozens of cognitive biases captured in the heuristics and biases literature [66,

90]. The cognitive biases relevant to a set of interactions are dependent on the nature of the

task people are performing. We focus herein on the cognitive biases that typically make
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Figure 4.1: Cognitive biases result in behavioral indicators that are measurable by the proposed
metrics. We scope this proposal to those indicators and metrics depicted above, but there are nu-
merous other biases, behavioral indicators, and ways to measure those indicators.

the evaluation of evidence an effective process. We refer to the evaluation of evidence as

the process by which data are determined to be relevant to the analysis process at hand.

Heuer [79] describes five types of cognitive biases particularly relevant for evaluating ev-

idence, defined in Table 4.1: vividness criterion, absence of evidence, oversensitivity to

consistency, coping with evidence of uncertain accuracy, and persistence of impressions

based on discredited evidence (also known as the continued influence effect). Each type of

bias, including those in Table 4.1, impacts people’s behavior in predictable ways. The third

column in the table gives an example of how each given type of bias might specifically

influence a user’s interactions. For each of these examples, we can compute on several

measurable patterns of user interaction, which we refer to as behavioral indicators of bias

or just indicators of bias.

We emphasize that our approach is based on the claim that there is not a one-to-one

mapping between cognitive biases and the proposed metrics. When a user is biased, we

expect to find these patterns in their interactions; however, detecting a particular indicator
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does not necessarily tell us which type of cognitive bias may have caused the behavioral

response. We have diagrammed this relationship between the types of cognitive biases

discussed in this section and the set of proposed metrics for measuring indicators of bias

in Figure 4.1. The block arrow between biases and indicators represents a many-to-many

mapping, the particulars of which we defer to future work. Here we focus on developing

metrics that relate to individual indicators of bias.

What Can We Measure?

To identify ways in which we might measure bias from interaction data, we need to develop

two key pieces of theory: (1) what can be measured, and (2) a method of interpreting the

measurements.

To address (1), we must identify the sets of possible things that can be measured, from

which we can derive metrics. Herein we focus on combinations of {types of interaction}

with {objects of interaction}. That is, types of interaction include things like clicks, hov-

ers, and drags afforded by a system that can be explicitly captured by event listeners. Se-

mantically similar interactions supported by other device modalities can be mapped to our

proposed metrics, but ultimately need to be bound to event handlers. For our prelimi-

nary metrics, objects of interaction currently include data points, attributes, and attribute

weights; however, we could conceivably measure interactions with many other objects,

including analytic model parameters or interactions with particular views in a multi-view

interface. Further, the metrics can only account for the dataset loaded in the system. For

example, if an analyst is examining a dataset of criminal suspects, the metrics would not be

able to infer about a bias toward a person not represented in the dataset.

To address (2), we must develop baseline models of behavior that would reflect perfor-

mance under assumptions of non-biased information gathering or decision making to make

appropriate inferences about biased behaviors. We assert that we can formulate models of

interaction behavior by conceptualizing the set of data points and possible interactions with
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those points as a state space over which we can define Markov chains. That is, we let each

interaction with a data point be a state in a state space. A user performing that {interaction,

data point} combination has transitioned to the associated state in the Markov chain. The

transition probabilities are the likelihood of subsequent interaction options given the cur-

rent state or current interaction. For example, if clicking on a point means you are likely to

next click on a point in close proximity, the transition probability would be high between

those two states. As we will develop further, the dataset defines the points, the interface

defines the possible interactions on those points, and together, the visual analytic system

defines the state space. Our Markov chain provides a generalizable approach to describing

any sequence of interactions with an analytic system. The model can be changed to capture

different analytic behaviors by simply altering the transition matrix for the Markov chain

on that state space. In this way, we can study different patterns of biased and unbiased be-

haviors to define relevant baselines for different domains all within a common theoretical

framework. But in this work, we will use a simple Markov chain, defined later, making

minimal assumptions about what constitutes unbiased behaviors.

To formalize our preliminary metrics, we first define some common notation, which is

summarized in Table 4.2. We define D = {d1, . . . , dN} to be a dataset of size N . Each

data point di has a set of M attributes, A = {a1, . . . , aM}. We define DU to be the unique

set of data points interacted with by a user. I(D) is the set of interactions by a user on the

dataset, and T = {click, hover, . . . } is the set of interaction types. Within a visual analytic

system, the set of possible interaction events is T ∪ D, the union of the set of interaction

types afforded by the interface and the set of data points.1

In a finite set of items, we define the concepts of coverage and distribution. Coverage

refers to the degree to which I(D) has sampled or covered the set T ∪D. We mean to use

coverage in an intuitive way here, referring roughly to the amount of data exploration that

1We note that in most non-streaming visual analytic systems, T and D, as well as T ∪ D are finite;
streaming data systems have the potential for countably infinite dataset sizes, but we leave consideration of
those sets to later work.
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a user has made on a dataset. Coverage is related to the notion of a cover for a set. The

cover for T ∪D is a collection of sets whose union contains T ∪D as a subset. In terms of

interactions, the cover for T ∪D is the union of all sets of interactions I(D) possible in the

analytic process. In information visualization, the concept of coverage has been studied as

a means to encourage users to explore more data [43, 53, 67, 156, 197] as well as inform

users of collaborators’ explorations [11, 89]. The concept of coverage is motivated by the

desire to ensure that the full extent of the data is considered, even if it represents an outlier

or otherwise lesser portion of the distribution of data.

Alternatively, the concept of distribution is motivated by the desire to ensure that the

user’s interactions with the data are proportional to the actual dispersion of the data. Dis-

tribution refers to the dispersion of the set of interactions I(D). Distribution differs from

coverage in that it accounts for repeated interactions rather than considering only the bi-

nary notion of set membership. For a set of interactions, the probability frequency function

over the dimension of interest for I(D) defines the shape of the dispersion of the data with

which the user has interacted.

Key to our present interest in modeling evolving behavior as people interact with sys-

tems is that we can track the events in I(D) that are created by the user over the course

of an analytics session. We propose that by tracking these events as a Markov chain over

the state space T ∪ D, we can define metrics characterizing I(D) in ways that reflect in-

formation gathering and decision making processes. When compared to a baseline, these

proposed metrics will enable us to assess when behavior differs from the baseline in mean-

ingful ways. In the present work, we focus on meaningful deviations that might reflect

cognitive biases. Further, for each metric, we define the bias value b ∈ [0, 1], where higher

values indicate more prominent indicators of bias, and lower values indicate less prominent

indicators of bias.

For our preliminary metrics, we assume a simple baseline model of independent, equally

likely interactions with any data point. At any given time, the probability of interacting
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with data point di on step k + 1 is P [di,k+1|dj,k] = 1/N , meaning that each next interac-

tion does not depend on the current interaction or the interaction history. A sequence of

interactions in I(D) thus forms a regular Markov chain, with the data points representing

the states in the chain with transition probability matrix P =
[

1
N

]
. Figure 4.2 illustrates

the Markov chain resulting from four interactions with a scatterplot. The sequence of ac-

tions taken by the user was: (1) hover over point d1; (2) hover over point d2; (3) hover

over point d3; and (4) click on point d3. The resulting Markov chain, given in set nota-

tion is {{hover, d1}, {hover, d2}, {hover, d3}, {click, d3}}. The green trajectory over Fig-

ures 4.2a – 4.2d illustrate the sequence of interaction events as a movement through a state

space, with the growing list of {interaction, data point} dyads forming the set I(D) for this

(a) Interaction 1: hover over point d1; resulting
Markov chain {{hover, d1}}

(b) Interaction 2: hover on point d2; resulting
Markov chain {{hover, d1}, {hover, d2}}

(c) Interaction 3: hover over point d3; resulting
Markov chain {{hover, d1}, {hover, d2},
{hover, d3}}

(d) Interaction 4: click on point d3; resulting
Markov chain {{hover, d1}, {hover, d2},
{hover, d3}, {click, d3}}

Figure 4.2: The Markov chain formed by the first four interactions with a scatterplot, superim-
posed on top of a visualization for illustrative purposes. The set of {interaction, data point} com-
binations constitutes the states of the Markov chain. Subsequent interactions are conceptualized as
the transitions between the states. A green point indicates a data point that has been interacted with.
The red arrows indicate possible transitions from the current state.

45



user. The dashed red arrows show the unbiased baseline model, where a transition from the

current (green) point to every other point, including self-transition, is equally likely.

While the assumption of uniformity is naı̈ve, it is intended to be only a preliminary point

of comparison. It allows us to establish the metrics while making few assumptions about

what unbiased behavioral indicators look like, because they are likely domain and interface

dependent. However, we note that the Markov chain approach allows us to flexibly swap

out the transition probability matrix without altering the computation of the proposed met-

rics themselves. We further discuss the process of creating better baseline representations

of unbiased behavior as in Chapter 4.3.

4.1.2 Preliminary Metrics for Cognitive Bias

We hypothesize that when cognitive bias is present, it should manifest in particular patterns

of interaction with the data. In this section, we propose six preliminary metrics for detect-

ing behavioral indicators of bias based on a user’s interactions. We quantify behavioral

indicators and define the expected values derived from the Markov chain baseline model.

For each metric, we give a description, the mathematical formulation, and an example use

with a type of bias from Table 4.1.

Data Point Coverage

Description. The data point coverage metric is an ordinal measure of the user’s attention

to the data points in the dataset. In particular, it measures the amount of the dataset with

which the user has interacted compared to the expected amount. In an unbiased exploration

of the entire available data, the metric decreases over time as the user interacts with more

of the dataset. Of course, early in the analysis, fewer data points will have been interacted

with than later in the analysis, so we must account for the number of possible interactions.

So the question for the metric with respect to bias is: Is there a time in the process where the
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Table 4.2: Notation used to describe the bias metrics

Notation Description

bµ

bias metric from the set of all metrics µ, with range
bµ ∈ [0, 1], where higher values indicate more prominent
indicators of bias

D = {d1, ..., dN} dataset of size N

A = {a1, . . . , aM} set of M attributes describing dataset D

T = {click, hover, ...} set of interaction types

DU
unique set of data points interacted with by the user, where
DU ⊆ D

I(dn) set of interactions with data point dn ∈ D

κ(X) cardinality of set X

κ̂(X)
expected cardinality of set X , based on a Markov chain
model of user interactions

w = [w(a1), . . . , w(aM)] attribute weight vector

the data point coverage is much smaller than would be predicted by the unbiased baseline

model?

Formulation. For data point coverage, we consider the size of the set of interactions

relative to the expected value of the baseline model. We define I(D) and DU as above.

Let κ(DU) be the size or cardinality of the set of unique points interacted with at any point

in time, and let κ(D) = N be the cardinality of the whole dataset. κ(DU) ≤ κ(D), and

κ(DU) approaches κ(D) as the user explores more of the dataset.

From the baseline Markov chain defined by the sequence of interactions in I(D), we

define κ̂(DU) as the expected number of unique data points interacted with in I(D). After

k interactions on a dataset, or k transitions in the Markov chain, we can define a set of k-

multisets, which are the sequences of length k with N possible objects in which any single

data point could be revisited up to k times. In k-multisets, the expected value of the number
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of unique data points visited in k interactions is defined by

κ̂(DU) =
Nk − (N − 1)k

Nk−1
. (4.1)

We then define the data point coverage metric bDPc according to Eq. 4.2.

bDPc = 1−min

(
κ(DU)

κ̂(DU)
, 1

)
(4.2)

Example. To understand how this metric might be useful in capturing behavioral indicators

of bias, consider the following. An analyst may propagate their bias by focusing on (e.g.,

repeatedly interacting with) or ignoring (e.g., not interacting with) certain data points. For

example, when an analyst uses the vividness criterion [79], they subconsciously rely more

heavily on evidence that is vivid or personal than on evidence that is dull or impersonal.

Thus, bias would be propagated through the system by interacting with only a small, vivid

subset of the full set of evidence.

Data Point Distribution

Description. The data point distribution metric is a measure of bias toward repeated inter-

actions with individual data points or subsets of the data. Here we compare the frequency

function of data point interactions to a baseline uniform distribution of interactions across

all D. Data point distribution aids in determining if the user is focusing their interactions

unevenly across the dataset.

Formulation. We can detect this by measuring the distribution of interactions with the data

points. The baseline model of independent, equally-likely interactions with the data points

predicts a uniform distribution of interactions. We compute the χ2 statistic, comparing

the actual number of interactions with each data point to the expected baseline uniform
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distribution according to Eq. 4.3.

χ2 =
N∑
n=1

(κ(I(dn))− κ̂(I(dn)))2

κ̂(I(dn))
(4.3)

Here, κ(I(dn)) denotes the observed number of interactions with data point dn, while

κ̂(I(dn)) denotes the expected number of interactions with dn. Derived from the regu-

lar Markov chain of interactions with P = [1/N ], after k interactions, κ̂(I(dn)) = k/N ,

equivalent to the expected number of times returning to data point dn in k steps. The p-

value is obtained from the χ2 distribution with N − 1 degrees of freedom, then the metric

value is defined according to Eq. 4.4.

bDPd = 1− p (4.4)

Example. To understand how this metric might be useful in capturing behavioral indicators

of bias, again consider the vividness criterion example. When an analyst uses the vividness

criterion [79], they subconsciously rely more heavily on evidence that is vivid or personal

than they do evidence that is dull or impersonal. Consequently, when evaluating evidence

and forming hypotheses, they are likely to return to those most vivid pieces of information

disproportionately to their actual value as evidence. This is measurable by considering the

distribution of interactions across data points.

Attribute Coverage

Description. Different from considering the way the set of interactions cover the set of

data points, we can also consider the way the points in DU cover the ranges of values for

the data attributes, A. Thus, for each attribute, the attribute coverage metric measures the

range of values explored by the user’s interactions. It gauges whether the data interacted

with by the user presents a comprehensive or narrow image of the full range of values along
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each dimension of the dataset. If a user interacts with data in the full range of values for a

given attribute, the metric will be low; alternatively, if a user only interacts with data in a

small range of the possible attribute values, the metric will be high.

Formulation. Attribute coverage is computed for each attribute separately, though a single

data point interaction impacts all attributes simultaneously. Attribute coverage refers to

the degree to which the user interactions have sufficiently covered the range of attribute

values. For categorical attributes, we define “sufficiently covered” to mean that at least

one data point has been interacted with for each value q ∈ Q that the attribute can take.

For continuous attributes, we define “sufficiently covered” by quantizing the data into Q

quantiles.

Let I(D) and DU be defined as above. Let Qam be the set of Q categorical values

or quantiles for attribute am. We then define the attribute coverage metric for attribute

am ∈ A, according to Eq. 4.5.

bAc(am) = 1−min

(
κ(DU,Qam

)

κ̂(DU,Qam
)
, 1

)
(4.5)

where κ(DU,Qam
) is the cardinality of the set of values/quantiles for attribute am covered

by the set of unique data points with which the user has interacted. Thus, bAc is greater

when the user has not interacted with data over the full range of values of am.

Similar to the data point coverage metric, the sequence ofQam sampled in k interactions

forms a k-multiset for attribute am. In k-multisets, the expected value of the number of

unique attribute values visited in k interactions is defined by

κ̂(DU , Qam) =
Qk
am − (Qam − 1)k

Qk−1
am

. (4.6)

As this is computed per attribute, there will be as many bAc scores as there are attributes of

the data. It is possible for a person to have broad attribute coverage of some attributes and

low attribute coverage of others.
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Example. Consider an analyst subject to oversensitivity to consistency [79]. This bias

can cause the analyst to dismiss evidence that is not part of the greatest encompassing

hypothesis. It may lead to fruitless pursuit of an incorrect hypothesis if alternative evidence

is not weighed and considered appropriately. Thus, an analyst subject to this bias might see

consistent evidence that a suspect’s vehicle is black and only examine black cars. The

analyst might be dismissive of different accounts that the vehicle was blue or silver and

consequently neglect to properly investigate alternatives. The bias would thus cause them

to only interact with a portion of the range of possible attribute values in the dataset.

Attribute Distribution

Description. The attribute distribution metric is a measure for detecting bias toward par-

ticular attributes of the data. For each attribute of the data, we compare the distribution of

the data interacted with to the distribution of the full dataset.

Formulation. Define A = {a1, ..., aM} as the set of attributes describing the data. For

numerical attributes (e.g., car price), we compare the distribution of data that has been

interacted with DU to the distribution of the full dataset D using a Kolmogorov-Smirnov

(KS) test, a nonparametric test for comparing continuous distributions. TheKS statistic for

attribute am is defined by S(N,n′,am) = supx
∣∣FD,N,am(x)−FDU ,n′,am(x)

∣∣, where FD,N,am(x)

and FDU ,n′,am(x) are the cumulative distribution functions for attribute am over the whole

dataset and the subset of unique interaction points, respectively, n′ = κ(DU), and sup is

the supremum function. We compute the empirical p-value using the KS distribution.

When the attribute am is categorical (e.g., gender), we apply a χ2 test with κ(Qam)

degrees of freedom to compare the distribution of data across the categorical values. We

define the test statistic according to Eq. 4.7.

χ2 =
∑
q

(κ(am,q)− κ̂(am,q))
2

κ̂(am,q)
(4.7)
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In this case, each value of q in am,q represents a different value of the categorical attribute

am. The observed value κ(am,q) = κ(I(D)) where dn[am] = am,q represents the number of

data points interacted with by the analyst that have value q for attribute am. The expected

values κ̂(am,q) are derived from the actual distributions of the attribute values.

For both numerical and categorical variables, we define the attribute distribution metric

bAd for attribute am using the p-value for the KS-test and χ2-test, respectively, according

to Eq. 4.8.

bAd(am) = 1− p (4.8)

Thus, the value of bAd(am) increases when the distribution of attribute am values of data

points in DU significantly differs from the distribution of attribute am values in D.

Example. Consider an analyst subject to oversensitivity to consistency [79]. If the analyst

focuses on the data that is consistent with the greatest encompassing hypothesis, the dis-

tribution of the data in DU will likely be skewed compared to the distribution D. In the

case of examining suspect vehicles, 75% of the analyst’s interactions may be with black

cars while only 15% of the candidate vehicles are black. Thus, this metric can capture bias

along particular dimensions of the data.

Attribute Weight Coverage

Attribute weights are used in visual analytic systems implicitly or explicitly to quantify

the importance of each attribute in the data toward some decision. Users often specify

attribute weights by interacting with interface sliders to specify each attribute’s importance.

The attribute weight metrics compare the coverage and distribution of weights that each

attribute has been assigned by the user or system. We define an attribute weight vector

w = [w(a1), . . . , w(aM)] comprised of numerical weights assigned to each attribute.

Description. We can consider the way the weights in w cover the possible ranges of values

for the attribute weights. Thus, for each attribute, the attribute weight coverage metric
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measures the range of values explored by the user interactions. It gauges whether the

attribute weights identified by the user’s interactions present a comprehensive or narrow

image of the full range of weights for each attribute. If a given attribute has had a wide

range of weights applied, the metric will be low; however, if the weight for a given attribute

has not taken on a diverse set of values, the metric will be high.

Formulation. With respect to attribute weights, the notion of coverage can be determined

by comparing the weights the user has assigned to each attribute to the possible range of

attribute weights. Again, this form of coverage is not about the shape of the distribution of

weights for each attribute. Rather, attribute weight coverage refers to the degree to which

the user interactions have sufficiently covered the range of attribute weight values. We first

quantize each attribute’s weight into Q quantiles. We then define “sufficiently covered” to

mean that at some point, the weight for attribute am has taken on a value in each of the Q

quantiles.

Let Qwam
be the set of quantiles for the weight of attribute am. We then define the

attribute weight coverage metric for attribute am ∈ A, according to Eq. 4.9.

bAWc(am) = 1−min

(
κ(WU,Qam

)

κ̂(WU,Qam
)
, 1

)
(4.9)

where κ(WU,Qam
) is the cardinality of the set of weight quantiles for attribute am covered

by the set of unique attribute weights that the user has defined. Thus, bAWc is greater when

the user has not defined wam to have a diverse range of values.

Similar to the attribute coverage metric, the sequence of Qw(am) sampled in k interac-

tions forms a k-multiset for attribute weight w(am). In k-multisets, the expected value of

the number of unique attribute weights visited in k interactions is defined by

κ̂(WU,Qam
) =

Qk
w(am) − (Qw(am) − 1)k

Qk−1
w(am)

. (4.10)
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Example. After a piece of evidence has been discredited, analysts should re-weight at-

tributes in accordance with new information. However, analysts subject to persistence of

impressions based on discredited evidence [79] will likely continue to rely on the same

weighting of attributes throughout their investigation. The bias would thus influence the

analyst to examine a smaller part of the range of attribute weights.

Attribute Weight Distribution

Description. The attribute weight distribution metric detects bias toward particular weight-

ings of data attributes. For each data attribute, we compare the distribution of the changes

in attribute weight to a baseline exponential distribution of changes in weight.

Formulation. The attribute weight distribution metric is based on the distributionF (∆w(am))

of the amount of change in an attribute weight between two interaction at times τi and τj ,

∆w(am) = wτi(am)−wτj(am). The baseline assumption is that users will be more likely to

make small changes (e.g., ∆w(am) close to 0) to the weight of an attribute than they are to

make large changes. In the present, we assume a baseline exponential distribution, f∆̂(x) =

λe−λx, with λ = 1. We compare the two distributions using a KS test. The KS statistic

for the weight of attribute am is defined by S(∆w(am)) = supx
∣∣F∆w(am)(x) − F∆̂w(am)(x)

∣∣,
where F∆̂w(am)(x) = (1 − e−x). We then define the attribute weight distribution metric

bAWd for attribute am using the p-value for the KS test, according to Eq. 4.11.

bAWd(am) = 1− p (4.11)

Thus, bAWd(am) increases when the distribution of weights for attribute am is far from the

expected exponential distribution.

Example. As with the attribute weight coverage metric, consider the example of the per-

sistence of impressions based on discredited evidence [79]. After a piece of evidence has

been discredited, the analyst is likely to change the attribute weights very little if at all.

54



Thus, the tail of the distribution representing large changes in attribute weights would be

smaller than the expected distribution.

4.1.3 Discussion

We defined and demonstrated six bias metrics as a critical first step toward creating quan-

tifiable models of cognitive bias in visual analytics. However, they are thus far theoretical

metrics requiring further refinement and testing. In this section, we present limitations of

the current metrics as well as some of the larger open research questions.

Generalizing the Metrics

In this section, we discuss some of the factors that were considered in defining the proposed

bias metrics and how they may be adjusted to generalize the metrics.

Baselines. First, we define baseline distributions for the metrics that assume uniform dis-

tributions of interactions, formalized as a regular Markov chain where transitions between

any two points and self-transitions are all equally likely. In many cases, this is probably

not an appropriate assumption, depending on the task and context. For example, an analyst

may be instructed by their supervisor to investigate only female suspects, while another

analyst may be responsible for investigating male suspects. Using the current baseline

comparison, the metrics would detect a bias along the gender dimension. However, if we

change the baseline Markov model such that the transition probabilities make it more likely

to interact with certain points over others, then the metrics can be assessed against a more

appropriate baseline behavior. In general, the metrics can be refined with the context of

the analyst’s assigned task, opening an interesting direction of research to understand how

users communicate their tasks to systems in the context of bias. Alternatively, the baseline

model could be defined by interaction probabilities derived from cognitive models of deci-

sion making performance, further increasing the fidelity of the comparison of an unbiased

baseline model to real human behavior.
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Data Types. The metrics are agnostic to the nature of the underlying data. The notions

of coverage and distribution can be applied to interactions with time-series or graph data,

for example, by logging the relevant information. In the case of graphs, that might mean

applying coverage and distribution concepts to the links between the data in addition to the

data points themselves. For time-series data, it might be relevant to compute metrics that

determine bias toward particular time windows. The key to integrating bias metrics is to

use an interface enabling interactions with the data.

Log Scope. Each metric is currently computed treating all interactions equivalently, but

certain types of interactions t ∈ T might be more important or semantically meaningful

in the system. Thus, the metrics could be computed and interpreted separately based on

interaction type, or the interactions used to compute each metric could be weighted accord-

ing to the importance of the interaction type. Similarly, the window of interactions used to

compute the metrics may be an important factor for metric interpretations. We currently

consider the entire history of an interaction session in the metric calculations. This ap-

proach might shed light on long-standing biases. Narrower time frames (e.g., 15 minute

windows) could illuminate shorter-scale patterns of bias where the user self-adjusted or

changed strategy over the session.

Interaction Types. We have primarily considered primitive interactions with data points

in the proposed metrics (e.g., click, hover, drag, etc.). More complex interactions across a

visual analytic system can be considered as well. The attribute weight metrics are exam-

ples that do not rely on interactions with data points, but rather consider interactions with

analytic model components. We will want to account for interactions like filtering, zoom-

ing, switching between alternative visualizations, or brushing and linking between multiple

coordinated views, and incidental interactions will need to be discounted. In all cases, we

include the possible interactions in T so they can be included in T ∪ D, and a Markov

chain can be computed over the set of interactions I(D) ⊂ T ∪ D. We can then derive

appropriate baselines and relevant metrics to inform users of biases toward particular data

56



representations.

Scalability. As the metrics are used to describe the decision making process, they can

be considered a space-saving asset in the case of understanding provenance. Rather than

preserving cumbersome log files for post-hoc analysis, the bias metrics might be computed

during the analytic process. However, several factors might improve the scalability of the

metrics themselves. For example, adjusting the window used in the metric computations

could serve to improve the scalability of the proposed approach. Scalability could further

be improved by computing the metrics using incremental algorithms that do not require the

full interaction history to be saved and recomputed, but rather update the model based on

the stream of interactions. An incremental approach would also improve the scalability of

the metrics for high dimensional or sparse data.

Confounding Expertise and Context

The word bias itself has a negative connotation. It evokes a sense of imperfection that we

tend to think we can overcome with careful critical thinking and reflection. However, we

emphasize that not all bias is bad. The same heuristic approach to problem-solving that

produces cognitive biases is what allows us to not be bogged down by constant trivial deci-

sions. It allows us to solve problems more quickly and to make fast perceptual judgments

(e.g., [28]).

In the analytic process, humans have intuition and expertise to guide them. However,

the interaction patterns of expert analysts and cognitively biased analysts might look very

similar despite very different cognitive processes. Consider the case of an analyst focusing

their attention on evidence surrounding a particular suspect. Such focus may result from

cognitive bias, or it may result from quick deliberate decisions based on years of experi-

ence. The analyst might also have knowledge about the case not captured by the data at the

time, like breaking new evidence. Thus, it is important to understand the role context and

domain expertise play in structuring the visual analytic process to differentiate expertise
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from cognitive biases producing an inferior analytic process.

User annotations of their own interactions would be one possibility for improving the

machine’s ability to distinguish expert and biased behavior. This would facilitate creating

a common understanding between the system and user by eliciting explicit user feedback

and reflection. The metrics could then be adjusted in real time to weight subsequent in-

teractions accordingly, so that confounding factors are not confused as negative biases. In

future work, we hope to study the extent to which interaction patterns differ for cogni-

tively biased users, expert analysts, and users with contextual information not captured in

the data. Additionally, we hope to understand how this distinction impacts bias mitigation

techniques.

4.1.4 Summary

In this section, we have addressed RQ 2.1 by describing six metrics for characterizing bias

in visual analytics, including {coverage and distribution} each computed for {data points,

attributes, and attribute weights}.
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4.2 Capturing Anchoring Bias with Interactive Bias Metrics

After defining theoretical foundations for bias metrics in visual analytics, we seek evidence

that the metrics are able to pick up on analysts’ biased behavior. Specifically, this section

focuses on the second sub-question of RQ 2. It describes work that has been done in

response to RQ 2.2 and has been published as a conference paper [190].

RQ 2.2: Can bias metrics be used specifically to capture anchoring bias?

In the previous section, we introduced metrics to quantify bias from user interactions in

real-time during the process of visual data analysis. The bias metrics track the interactive

process of users with respect to the visualization, data, and analytic model in the system

to create a quantitative representation of analytic provenance. The theoretical formulation

of the metrics, however, must be validated. Do the bias metrics give a signal when users

are engaged in analytic processes known to be influenced by bias? Further, the theoretical

formulation of the metrics leaves many open questions regarding the implementation details

of the bias metrics in a visual analytic tool, including: (1) which interactions are used in

each computation?, (2) how often to compute the metrics?, and so on. We explore these

questions in the context of anchoring bias, which describes the tendency for people to rely

too heavily on initial information when making a decision [51].

In this section, we present the results of a formative study to examine how bias can be

observed in users’ interactive behaviors through the lens of the bias metrics, while simul-

taneously refining our understanding of how to apply the interactive bias metrics in a real

scenario. Our goal is to leverage a well-known and highly studied form of bias (anchor-

ing [51, 62]) to influence participants’ analysis process in a controlled and predictable way.

Specifically, we presented users with one of two alternative task framings, each intended to

encourage users to anchor on different attributes of the data. Users were tasked with cate-

gorizing basketball players’ positions using an interactive visual analytic tool. We analyzed

the bias metrics over the duration of each participant session. Note that while the ultimate
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goal of the metrics is online interpretation and mixed-initiative adaptation, the present work

collected full interaction sequences of metrics for post-hoc analysis, to ensure the metrics

can capture bias and to elucidate how to put the metrics into practice. Our analysis sug-

gests anchoring bias elicited by task framing can be observed in users’ interactive behavior

through the lens of the computational bias metrics.

4.2.1 Methodology

We conducted a formative study to explore the ways that anchoring bias manifests in in-

teractive behavior during visual data analysis, specifically through the lens of the bias met-

rics, described in Chapter 4.1. Anchoring bias describes the tendency for people to rely too

heavily on initial information when making a decision [51]. In the analytic process, this

tendency leads people to preferentially weight some information and systematically neglect

other information, often leading to poorly informed decisions. In order to induce such an-

choring bias on participants in this study, we utilized framing effects. Framing describes

the manner in which a choice is presented to people, including the language used, the con-

text, and the nature of the information displayed [179, 180]. Framing has been found to

strongly shape decision-making [174], as people tend to take more risks under negative

framing conditions. The way that information, task goals, or context are introduced to peo-

ple has a strong impact on how they will conduct their analysis. By using framing effects

to induce anchoring bias, we are able to evaluate how a well known bias manifests in user

interaction patterns for a visual data exploration and classification task.

Participants in the study were tasked with categorizing a dataset of basketball players.

Using the visual analytics tool InterAxis [94], shown in Figure 4.3, users were instructed to

explore the dataset and label 100 anonymized basketball players according to the position

they play. Participants were randomly assigned to one of two different framing conditions,

each of which described the five different positions in basketball using different attributes.

The goal of using two different conditions was to anchor participants on those specific
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Figure 4.3: A modified version of the system InterAxis[94], the interface used by participants to
complete the task of categorizing basketball players. See text for more details.

attributes during their analysis (see Table 4.3). Given the predictable ways anchoring bias

influences decision making, this study explores the research question can the bias metrics

be used to characterize interactive behavioral differences when people are anchored on

different attributes of the data?

InterAxis

Participants used a scatterplot-based visual analytics tool to categorize basketball players

by their position (Figure 4.3). Pilot studies led us to modify the InterAxis user interface

from its presentation in [94] for ease of use in the study. Changes include: the y-axis

custom axis options were removed; the color scheme was changed, data point colors were

changed to reflect participants’ labels; options for saving the plot settings were removed;

experiment control options (e.g., Un-Assign label option, Continue button) were added.

The data from the pilot was only for testing and feedback on our protocol and not included

in the results.

The primary view in InterAxis is a scatterplot, where each of 100 basketball players

is represented by a circle (Figure 4.3A). Hovering on a circle reveals details about that
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player (Figure 4.3B). Data points can be dragged from the scatterplot into the bins on

either side of the x-axis (Figure 4.3C). The system, in response, will compute a custom

axis using a linear dimension reduction technique. The result is a set of attribute weights

that represents the differences between the points in the bin on the high end of the axis

and the bin on the low end of the axis. The attribute weights are visualized as bars along

the axis (Figure 4.3D). The bars can also be interacted with by click and drag to directly

manipulate the weights that make up the custom axis. Participants can read a description

of each position by clicking on the colored circles below the detail panel (Figure 4.3E).

With one of the positions selected, the user can then label players as the selected position

by clicking on the points in the scatterplot.

We chose to use InterAxis for the study due to the system’s highly interactive nature – to

encourage users to explore and interact with the data, since the bias metrics ultimately rely

on user interactions. Further, InterAxis allows users to browse data points and attributes,

in addition to using an analytic model consisting of weighted attributes to project the data.

This allows us to use the full set of bias metrics.

Analytic Task & Framing Conditions

Studies of anchoring bias within the cognitive science community rely on highly controlled

experiments to isolate a cognitive phenomenon. However, in interactive visual data anal-

ysis, cognitive processes are often much more complex than can be captured from such

experiments. Hence we sought a task with enough complexity to simulate decision making

within a realistic analysis scenario while maintaining tractable experimental conditions.

There are many tasks associated with performing data analysis in a visual analytic tool,

such as ranking, clustering, or categorizing data [48, 159]. What bias looks like can be

quite different across these tasks; hence, for this study we narrowed our scope to focus on
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Table 4.3: Position descriptions used in the two framing conditions. Size condition partic-
ipants were expected to rely more heavily on size-related attributes (Height and Weight).
Role condition participants were expected to rely more heavily on the role-related attributes
called out in the description.

Position Size Condition Role Condition

Center (C) Typically the largest
players on the team

Responsible for protecting the basket,
resulting in lots of blocks

Power Forward
(PF)

Typically of
medium-large size and
stature

Typically spends most time near the
basket, resulting in lots of rebounds

Small Forward
(SF)

Typically of medium
size and stature

Typically a strong defender with lots
of steals

Shooting Guard
(SG)

Typically of
small-medium size and
stature

Typically attempts many shots,
especially long-ranged shots (i.e.,
3-pointers)

Point Guard (PG) Usually the smallest and
quickest players

Skilled at passing and dribbling;
primarily responsible for distributing
the ball to other players resulting in
many assists

categorization-based analysis. We found through pilot studies that categorizing basketball

players was a sufficiently challenging task that led users to interact with the visual analytics

tool for approximately 30 minutes. This provided a balance of task complexity and study

tractability.

We asked participants to categorize a set of 100 basketball players by their positions

based on their stats using the InterAxis visual analytic tool [94], shown in Figure 4.3. The

study dataset was a subset derived from a dataset of professional (NBA) basketball players2

whose names and team affiliations were removed. After filtering out less active players

(whose statistical attributes were too small to be informative), we randomly selected 20

players for each of five positions: Center (C), Power Forward (PF), Small Forward (SF),

Shooting Guard (SG), and Point Guard (PG) for a total of 100 players. Each player had

2 http://stats.nba.com/
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data for the following stats: 3-Pointers Attempted, 3-Pointers Made, Assists, Blocks, Field

Goals Attempted, Field Goals Made, Free Throws Attempted, Free Throws Made, Minutes,

Personal Fouls, Points, Offensive Rebounds, Steals, Total Rebounds, Turnovers, Games

Played, Height (Inches), and Weight (Pounds).

Participants were assigned to one of two conditions. The two conditions differed in the

descriptions provided for the five positions (C, PF, SF, SG, and PG). In the Size condition,

the descriptions are based on physical attributes (Height and Weight) of players. In the

Role condition, positions were described with respect to their typical role on the court and

performance statistics. These descriptions were based on analysis of the distributions of

attributes for each position as well as descriptions of the positions recognized by NBA.3

Table 4.3 shows the text used to describe the positions in each condition.

Participants

Ten participants (4 female, mean age 25.5± 2.7 years) were recruited from a large univer-

sity. All but one participant had experience playing basketball, and six participants watched

at least a few (NCAA, NBA, WNBA) games per season. The one participant who never

played basketball watches it regularly. All participants were at least moderately familiar

with information visualization. Participants were randomly assigned to either the Size or

Role condition.

Procedure

Participants began with informed consent, completed a demographic questionnaire, and

were shown a 5-minute video describing the task and demonstrating use of the InterAxis to

complete the task. The demonstration used different position descriptions than the study.

Participants then completed the main task, using InterAxis to categorize 100 basketball

players into one of five positions. There were no time limits for completing the task. After

3http://www.nba.com/canada/Basketball_U_Players_and_Posi-Canada_
Generic_Article-18037.html
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completing the task, participants were administered a post-study questionnaire about their

experience. Participants were compensated with a $10 Starbucks gift card.

Throughout the task, an investigator observed the participant’s interactions, taking notes

of each participant’s strategies (e.g., labeling points the user was most confident about, re-

lying on a particular attribute for their categorizations, using nearby data points to visually

categorize an uncertain point, etc). Participants were encouraged to ask questions as needed

regarding the interface, the underlying algorithmic transformations, or the meaning of an

attribute. As needed, the investigator would prompt the participant to clarify their strategy

to understand when shifts in strategy occur. The investigator did not reveal information

about the underlying distribution of positions in the dataset or additional attributes that

might be used to help categorize players.

Timestamped logs of the users’ interactions were automatically recorded, including in-

teractions with data points (labeling, hovering to reveal details, and dragging to axis bins),

interactions with axes (selecting a new attribute for an axis, dragging to adjust attribute

weights, and recomputing attribute weights based on interactions with the bins), and inter-

actions with position descriptions (clicking to reveal a description and double clicking to

de-select a position description). The interaction logs capture the input data for the bias

metrics.

4.2.2 Verifying Anchoring Effects

To see how the bias metrics characterize anchoring bias, we first analyze how framing

impacted user behaviors. We verified that the task framings induced an anchoring bias

by analyzing behavioral differences between participants in the two conditions. This is

an important first step to ensure that the signal detected by the bias metrics during the

analysis process can be attributed to anchoring bias. The results of this analysis indicate

that participants relied heavily on the attributes used in their respective condition groups.

The two framing conditions, Size and Role, were designed to bias participants in a con-

65



Figure 4.4: Boxplots of number of attribute interactions via axis manipulation in InterAxis. The
median is indicated by the thick middle line, the inner quartiles within the box, and the outer quar-
tiles the whisker bars. The red dots indicate the sum of observations for each participant (rather than
outliers as in traditional boxplots.)

trolled way. Our prediction is that participants will anchor, or rely more heavily, on the at-

tributes in the particular descriptions used in their condition (Table 4.3). We first compared

the frequencies of attributes selected for the axes in the scatterplot between the two framing

conditions. We predicted that participants in the Size condition would select the Height or

Weight attributes on the axes more than participants in the Role condition. Likewise, we

predicted that participants in the Role condition would select the other framed attributes
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(Blocks, Rebounds, Steals, 3-Pointers, or Assists) on the axes more than participants in the

Size condition.

Figure 4.4 shows the results of this analysis. Each boxplot shows the number of times

the given attribute was selected on the axis for participants in the Role condition (left)

and the Size condition (right). Larger separation of mean and quartile values suggests that

the framing condition impacted the given attribute, while significantly overlapping box-

plots suggest little or no difference between the framing conditions for that attribute. The

boxplots reveal that some attribute axis selections show clear differences supporting our

predictions (e.g., Height, Blocks, Offensive Rebounds, Steals, and 3-Pointers Attempted),

while others are less clearly affected (e.g., Weight, Total Rebounds, and 3-Pointers Made).

These results suggest that the participants from the two groups anchored on the attributes

described in the respective framing conditions.

We also characterized if participants showed different patterns in their use of the posi-

tion labels between conditions. That is, anchoring bias could influence their tendency to

use one label more than others, in addition to selecting the attributes differently. In cate-

gorization models, using one label more than another is often measured with a parameter

called bias, referring to the bias for some categories over others. We fit the Generalized

Context Model (GCM) to the categorization identification-confusion matrices [128, 130].

The GCM defines the probability of assigning players Si from group i to position label Rj

as P [Rj|Si] =
βjηi,j∑

k∈K βkηi,k
, where 0 < βj < 0 is the bias for label j, subject to

∑
j βj = 1,

and ηi,j > 0 is the similarity of player i to all the other members of position j. We fit GCM

parameters with a Bayesian MCMC estimate of 10,000 runs, holding attention weights

constant, and βj was given a uniform(0,1) prior. The mean βj parameter estimates for each

category and group are plotted in Figure 4.5. If participants are unbiased in assigning posi-

tion labels then we would expect all βj = 0.2. Figure 4.5 shows βj are around 0.2 for most

positions. The Size condition has less variability in the βj values, but there is evidence

in that condition for a higher βj for labeling Point Guard. The Role condition produced
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Figure 4.5: Box plots of the GCM bias parameters estimated for each position for the Role and
Size conditions. Red points represent the individual participant values.

more variability in category bias, with most participants showing a bias toward assigning

the label Point Guard over the other positions. Center and Power Forward show lower bias

parameters, suggesting Role condition participants were less likely to assign those as labels

to players.

Together, these results confirm that the Role and Size conditions influenced the overall

categorization behaviors in ways consistent with our intended manipulations. With this

overall evidence for shifting biases and attribute selection patterns, we turn to exploring the

interaction patterns to see how these biases are reflected in our novel bias metrics. We note

that the critical evaluation of the metrics herein relies on within-subject analysis, because

the ultimate application will be quantifying the bias of a single user while performing

visual analytic tasks. Consequently, our between-condition analyses remain qualitative as
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we compare the within-subject metrics patterns.

4.2.3 Analysis and Results

We analyzed the user study data with the high-level goal of understanding how anchoring

bias manifests in participants’ behavior through the lens of the bias metrics. The bias

metrics provide us with the ability to characterize a user’s analytic process in real-time by

quantifying aspects of their interaction patterns in which they may be exhibiting bias. In

particular, we analyze the bias metrics from the granularity of (1) the sequences of [0, 1]

metric values over time, and (2) where in the distribution of the data user interactions

deviate from expected behavior. To analyze if the metrics can capture bias, we use the

collected interaction logs to simulate the real-time computation of the bias metrics after

each user’s session in order to avoid influencing the analysis process. We note that the bias

metrics create 74 unique time series per participant (DPC + DPD + 18 attributes x {AC,

AD, AWC, AWD}). In the scope of this work, we narrow the focus of our discussion to

only attributes that were referenced in the position descriptions to analyze if they picked

up on the induced bias. We discuss a few selected examples of findings from the computed

bias metrics. Visualizations of all metrics can be found in the supplemental materials.4

Participants’ accuracy for categorizing players averaged 53% (SD = 18%) over the

course of 33.6 minutes (SD = 14 min). Some interactions were filtered out to reduce

noise in the bias metric computations. Namely, hovers less than 100 ms were removed

as likely “incidental” interactions performed unintentionally while navigating the mouse

cursor to a different part of the interface. Because hovering in the interface shows a data

point’s details, particularly short hovers were likely not intentional interactions by the user

to get information. Participants performed an average of 1647 interactions (SD = 710),

which filtered down to an average of 791 non-incidental interactions (SD = 300). For

additional discussion on which interactions are included in the bias metric computations,

4https://github.com/gtvalab/bias-framing
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see the Discussion section.

Metrics over Interaction Sequences

After every interaction, each bias metric computation results in a value between [0,1] quan-

tifying the level of bias at that time. Computed over time, the metrics produce a sequence

of values quantifying the level of bias throughout the analysis process which can be visual-

ized as a time series. One way to test whether bias metrics capture anchoring is to look for

differences in these sequences between the two conditions.

We hypothesized that the attributes explicitly described in each condition (Height and

Weight for the Size condition; Blocks, Rebounds, Steals, 3-Pointers, and Assists for the

Role condition) will have higher metric values in the associated condition than in the other.

For example, we expect the time series of AD values for Assists for Role condition partici-

pants to be higher than the values for Size condition participants. To address this question,

we visualized the time series for each of the 74 metrics.

Figure 4.6 shows the AC metric for (A) the Height attribute and for (B) the Weight

attribute. The blue line represents the AC metric time series averaged over all Role con-

dition participants. The orange line represents the AC metric time series averaged over

all Size condition participants. Visual examination of Figure 4.6 finds that Size condition

participants tended to have higher peaks (metric values closer to 1) and longer peaks (over

greater spans of time) in the AC bias metric for the Height and Weight attributes than Role

condition participants, consistent with the framing.

This visual trend can also be observed by comparing bias values averaged over the full

interaction sequence for participants in each condition. Size condition participants had an

average value of MSize = 0.2211 (SD = 0.066) for the Height AC metric compared to

MRole = 0.0952 (SD = 0.016). Similarly, for the Weight AC metric, the Size condition

participants had an average value of MSize = 0.2120 (SD = 0.098) compared to the Role

condition participants MRole = 0.0849 (SD = 0.042).
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Figure 4.6: A visualization of the average Attribute Coverage (AC) metric for the attributes (A)
Height and (B) Weight for participants in each condition. Size condition participants (in orange)
tended to have higher AC bias for Height and Weight than Role condition participants (in blue),
consistent with our predictions.

This evidence supports our hypothesis; however, not all metrics show a discernible

difference between the two conditions. One potential explanation for inconsistent effects is

the level of granularity in the analysis. The bias metric values indicate the degree of bias;

however, they do not indicate the source of the bias. For example, a user focusing mostly

on particularly tall players might have the same metric value as a user focusing mostly on

particularly short players. That is, simply knowing the metric value captures presence of

a bias in the coverage or distribution of the data, attributes, or attribute weights; however,

the number itself does not differentiate the source within the data distributions. In the next

section, we address this by looking not just at the [0, 1] metric values, but the underlying

coverage or distribution that comprises that computation.
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Coverage and Distribution of Bias Metric Values

To compute the metric values, an intermediate step is to break down the user’s interactions

with data points, attributes, and attribute weights into quantiles and distributions. One way

to illuminate the framing effects on user interaction patterns is to compare the metrics bro-

ken down into components of coverage and distribution rather than just the summative [0, 1]

values. Thus, in this analysis we visualized this breakdown of coverage and distribution

metrics using a heatmap. Note that because the bias metrics are computed independently

for each participant, the color scale used to shade the cells is likewise normalized for each

participant. That is, a black cell in the DPD metric for one participant may represent a dif-

ferent number of interactions than a black cell in the DPD metric for a different participant.

The scales are defined in each plot.

Figure 4.7 shows what the metrics DPD, AD for Assists, and AWD for Assists look

like for one Role condition participant. All of the metrics share a common x-axis of time,

captured as the interaction number. The colored bars beneath the time represents the type

of position being labeled during that time period (blue = PG, orange = SG, green = SF, red

= PF, and purple = C). The shading in a particular (x, y) position represents the count of

interactions that fall within the given bin at the given point in time, where darker shades

represent a greater number of interactions.

In Figure 4.7A, the y-axis shows a row for each data point to illustrate DPD. The DPD

metric shows more bias toward players who are PGs while attempting to label PGs (2) than

while attempting to label SFs (1), consistent with correct categorizations. This can visually

indicate the user’s bias toward particular players based on their interactive behavior. In Fig-

ure 4.7B, the y-axis illustrates the distribution of attribute values (AD) broken down into

four quantiles. The AD metric for Average Assists shows a stronger bias toward players

with a high number of Average Assists while labeling PGs (1) than while labeling Centers

(2), consistent with Role framing. In Figure 4.7C, the y-axis illustrates the breakdown of

attribute weight ranges (AWD) into four quantiles. The AWD metric for Average Assists
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Figure 4.7: Visualizations of three of the bias metrics for a Role condition participant: (A) the
DPD metric, (B) the AD metric for Average Assists, and (C) the AWD metric for Average Assists.
While labeling Point Guards (PG; blue boxes), compared to labeling other positions (SF = green
boxes, C = purple boxes, PF = red boxes), the participant exhibited more bias toward PG players
(A) and the Assists attribute (B) and (C) from the Role condition PG description.

indicates a bias toward higher weighting of the attribute while labeling Point Guards (1)

than while labeling Power Forwards (2). The Role condition Point Guard description is

intended to influence participants to anchor on the Average Assists attribute. Hence, Fig-

ure 4.7B and Figure 4.7C visually capture a user’s anchoring bias toward an attribute.

Figure 4.8A visually compares AWC for Height between two users from different con-

ditions. The position descriptions used in the Size condition were designed to anchor par-

ticipants on Height and Weight attributes. The Size condition participant (top) showed

greater coverage of the range of attribute weights (as shown by the black bars in all four

quartiles) and spent more time with a high positive weight applied to the Height attribute.
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Figure 4.8: (A) Visualization of the AWC metric. The Size condition participant (top) showed
more coverage of the range of Height attribute weights than the Role condition participant (bottom).
(B) Visualization of the AD metric for Total Rebounds. Participants focused more on upper parts of
the Rebounds distribution while labeling PFs (red boxes) than other positions.

Comparatively, the Role condition participant (bottom) covered less of the range of possi-

ble attribute weights and spent the vast majority of their analysis with a low weight applied

to the Height attribute. We can quantify this difference using the L metric from recurrence

quantification analysis [31]. L gives the average length of diagonal segments in a recur-

rence analysis. Applied to the metric state, larger L values reflect staying in a state longer

while smaller L values reflect switching more frequently between quantiles. For the Size

participant (top), L = 14.9 indicating more switching, and L = 229.8 for the Role partici-

pant (bottom), reflecting a very long time in a single quantile which is seen in Figure 4.8A.

Heatmaps for all metrics and all participants can be seen in the supplemental material.

Similarly, Figure 4.8B shows how AD for Average Total Rebounds compares for one

Size condition participant (top) and one Role condition participant (bottom). Role con-
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dition participants were told that PFs typically have a high number of Rebounds. While

labeling PFs, both the Role condition participant (4) and the Size condition participant (1)

showed interactions with greater focus toward the upper parts of the distribution (Q3 and

Q4). Similarly, both the Role condition participant (3) and the Size condition participant

(2) interacted with lower parts of the distribution (Q1 and Q2) while labeling other posi-

tions. While the Size condition participants were not explicitly told about the importance

of Rebounds for PFs, there is a correlation between the size (Weight) of PFs and Rebounds

(r = 0.414, p = 0.069), which could explain the similar patterns across the two condi-

tions. Looking at the distribution patterns, we see both participants spent some time in all

quantiles for the AD metrics. For the participant in the Size condition (top), L = 21.2,

and for the Role condition participant (bottom), L = 16.8. The participants had similar

L magnitudes, but the relatively larger value for Size condition participant indicates less

switching between quantiles.

In summary, the task framing impacted which attributes people rely on in their inter-

active analysis process. These visualizations of the interactive bias metrics collectively

demonstrate that anchoring bias toward particular attributes of the data can be observed in

the real-time bias metrics.

4.2.4 Applying the Bias Metrics

This study constitutes the first application of the bias metrics described in Chapter 4.1, and

explores how to analyze them for bias. Consequently, we identified a number of challenges

to consider and extracted several lessons learned in moving from theory to implementation

in measuring bias through interactions. Additional sources of variability in user activities

arise in the real-world analysis process that challenge theoretical assumptions. Implemen-

tation choices made early in the design process may need to adjust or adapt on the fly to

accommodate unforeseen activities by the experimental participants. In this section, we

present guidelines and considerations for integrating and applying the bias metrics, includ-
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ing a discussion on interaction design for the bias metrics, which interactions should be

included in the bias metric computations, and how to interpret the metrics.

Designing for Measurement v. Usability

Fisher et al. [56] describe visual analytics as a “translational cognitive science.” That is,

they posit that visual analytics is a cognitive science that must travel between the often-

disjointed worlds or pure science and design. In the present work, these worlds collide

in the design of tools intended to measure bias from user interaction. Science motivates

the interaction design to best externally reflect internal cognitive processes, while design

focuses on creating a seamless and enjoyable user experience.

Designing a visualization system often involves understanding potential user needs, in-

cluding things like ease-of-use, learnability, or powerful analytic capabilities. These goals

each necessitate particular design decisions. Incorporating interaction-based bias metrics

in an interface likewise entails its own design requirements which may conflict with other

design goals. While incorporating bias computation and visualization in an interface has

the potential to promote better analysis behaviors, it ultimately relies on interpreting user

interactions as a meaningful capture of analytic process. Hence, the design must facilitate

sufficient, meaningful, recordable interactions. In other words, the analysis process must

be explicit in the interaction design of the interface.

For example, in the modification of the InterAxis [94] system for the evaluation dis-

cussed in the user study methodology section, we debated the interaction design for label-

ing basketball players’ positions. A lasso tool could be an efficient way to label players

in bulk; however, providing such a tool would make the interpretation of the interaction

difficult from the perspective of the bias metrics. Further, participants would be less likely

to interact with individual data points, read their individual attributes, and make a decision.

Given that the bias metrics rely on abundant interaction data, we instead decided to use

single click to label data points and hover to reveal details about individual data points. This
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decision came at the expense of a potentially less frustrating user experience, as echoed by

participants after the study. Similarly, Dimara et al. [40] conducted a study in which they

had users click to locally delete individual data points on a scatterplot until a single point

remained (as opposed to clicking to select the single data point in the decision). While this

showed promise for mitigating bias (specifically, the attraction effect), it came at the cost

of a tedious user experience.

Such trade-offs must be considered when integrating bias metrics into practical tool

design. And they raise important questions for future research, such as: if the interaction

design in an interface does not organically produce sufficient interaction data to measure,

to what extent is it acceptable to violate user experience to achieve it?

Which Interactions to Compute On

Incidental Interactions: The bias metrics rely on recording and computing on sequences

of user interactions. Just as we must ensure that a system’s interactions are designed to

explicitly capture as much of the decision making process as possible, we also need a way

of knowing if some of the interactions were unintentional or lacked meaning. For example,

a user may want to hover on a particular data point in the scatterplot to get details; however,

due to the particular axis configuration or zoom level, the scatterplot may be overplotted.

Thus, in attempting to perform a single deliberate interaction, the user might accidentally

hover on several other data points along the way. These “incidental” interactions do not

reflect the user’s intent in any way and should thus ideally be discarded from the bias com-

putations to remove noise. As an initial proxy for filtering out noisy incidental interactions,

we ignored all hovers less than 100 ms. Some amount of noise is to be expected when

leveraging user interaction as a proxy for a user’s cognitive state. However, the fidelity of

models can be improved by taking care to ensure, even with rough approximations, that the

interactions computed on reflect a meaningful capture of user intent.

Interaction Windowing: Chapter 4 presents a formulation of metrics for characterizing
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bias based on prior user interactions; however, it does not inform us when to compute

the metrics or how many prior interactions should be computed on. In our study, we

experimented with three different techniques for scoping the metric computations.

Our first approach was to compute the bias metrics after every interaction and use the

full interaction history for every computation. Next, we tried a rolling window of the pre-

vious n interactions around each current interaction. The window size n then introduced

another variable whose value can lead to potentially very different results. We experi-

mented with window sizes ranging from 25 to 100 previous interactions. Lastly, we tried

using key decision points, where the bias metrics could be computed using all of the in-

teractions that occurred since the last decision point. We computed two variations of this:

(1) using each data point label as a decision point, and (2) using the activation of a posi-

tion (Figure 4.3E) as a decision point. Generalizing this windowing technique, however,

requires that decision points be known, which may not be the case depending on the task

and interface.

Each of these windowing techniques gives a slightly different perspective on the user’s

bias. For example, using the full interaction history can shed light on long-standing biases

throughout the user’s analytic process, while using a rolling window can capture more

short-lived biases. Alternatively, using only the interactions between key decision points

can be used to characterize bias in a user’s interactions associated with individual decisions.

As we did not know what strategies people might use, we captured short-lived biases using

a rolling window, size n = 50, computed after each interaction.

Interpreting the Bias Metrics. The bias metrics are formulated such that a value b ∈

[0, 1] is produced, where 0 indicates no bias and 1 indicates high bias. While an objective

characterization of bias, the value b itself is not actionable. That is, the bias value alone

does not provide sufficient detail to a user to facilitate effective reflection and correction of

their behavior. For example, a user might have a high bias value for the Height AD metric.

This could be due to the user focusing unevenly on short players, on tall players, or on any
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part of the distribution.

To draw actionable conclusions from the bias metric values, it is important to provide

additional information to the user, specifically about where in the data or the distribution

the user’s interactions depart from the objective expectation. In the evaluation results, we

showed one potential solution, which visualizes the coverage and distribution of interac-

tions across data points, attributes, and attribute weights as a heatmap (Figures 4.7–4.8).

Combining both the [0,1] bias values along with the coverage and distribution that com-

prises the bias value computation might be ideal in some situations. For example, the

[0,1] bias values could be used by automated techniques to select the most concerning di-

mension(s) in the user’s behavior. Then, using the coverage and distribution information,

systems can visualize the source of bias as the imbalance between the unbiased baseline

behavior and the user’s interactions.

4.2.5 Discussion

Study Limitations

One limitation of the current study was the lack of consideration for visual salience as a

confounding explanation for some interactive behavior. Because users could change axis

configurations and zoom and pan on the scatterplot, different clusters of points or outliers

might draw the user’s attention. In future work, we would like to explore baselines that ac-

count for visual salience to better model unbiased behavior. Other factors can also impact

users’ interactive behaviors, including incidental interactions, task-switching, environmen-

tal distractions, and so on. It is of general interest to improve baseline models of unbiased

behavior to account for such factors.

We have focused our analysis on an exploration of within-subjects patterns in the data,

toward our goal of within-user, online use of the metrics. The present data includes, on

average, 74 metrics X 791 interactions per participant, in addition to overall metrics like

task accuracy. While this sample is large enough for our present analysis, ten participants

79



is too few for strong between-subjects statistical power. Because these metrics are new, we

are simultaneously developing the analyses for the metrics while testing their validity and

applicability. Ultimately, our goal is to determine an effective analysis pipeline to facilitate

larger data collection efforts for both within and between subjects analyses.

Generalizing Tasks and Interfaces

In this study, participants were tasked with categorizing basketball players by position in a

visual analytic tool. Our goal was to study a cognitive phenomenon (bias) in the context of a

real-world problem (using a visual analytic system for categorization and decision making).

However, the study focused on a single constrained subtask of data analysis. In reality, data

analysis can be much messier with analysts examining alternative hypotheses and switching

between potentially very different subtasks in diverse analytic interfaces. In future work,

we would like to examine how bias materializes in other types of interfaces and analytic

subtasks (e.g., ranking, clustering, etc.) as well as how these subtasks combine into more

complete sensemaking. We would also like to enable handling multiple data sources, which

will challenge the definitions of the metrics. For example, handling text documents may be

challenging because clicking to open the document constitutes one interaction but the time

spent reading the document without interface interactions could be substantial. We may

need to identify meaningful ways to incorporate time on task into the metric computations.

Temporal Interaction Weighting

In the previous section, we discussed the impact of different windowing techniques for

computing the bias metrics. One potential improvement on these variations would be to

come up with a temporal weighting scheme, where all interactions are used to compute the

bias metrics, and the interactions are weighted by recency. The most recent interactions

would be weighted more highly than interactions that were performed early in the user’s

analysis process. A rigorous evaluation of windowing and interaction weighting schemes
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could inform the way that we account for how current analytic processes are informed by

previous ones.

4.2.6 Summary

In this section, we have addressed RQ 2.2 by conducting a study to assess whether an-

choring bias can be detected using the bias metrics described in the previous section. We

presented the results of a study where participants were assigned to one of two conditions

for a categorization task using a visual analytic system. Comparing the two conditions,

we found that user interactions interpreted through the bias metrics captured strategies and

behaviors reflecting the manipulated anchoring bias. To produce a stronger signal of bias,

we posit that baseline models of unbiased behavior may need to be refined.
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4.3 Refining Interactive Bias Metrics

We defined bias metrics and validated that they can be used to characterize anchoring bias

from user interactions in a scatterplot. Now, we seek to revisit one of the fundamental

assumptions made in the theoretical formulation of the metrics: that at any point in the

analysis, the user is equally likely to interact with any data point. We refine the metrics

by trying to better understand what users’ unbiased behavior looks like. Specifically, this

section focuses on the third sub-question of RQ 2. It describes work that has been done in

response to RQ 2.3 and was published as a short paper at IEEE VIS [189].

RQ 2.3: How can the bias metrics be refined to more accurately account for

unbiased interactive behavior?

In this section, we analyze the assumptions made about how to model unbiased behavior

in the metrics described in Chapter 4.1. The baseline of unbiased behavior was theorized

as a Markov model, where each combination of {data point, interaction type} constitutes

a unique state. However, “unbiased behavior” was initially suggested to be represented as

equal probabilities between all states in the Markov model. This assumes randomness in

the user’s interactive behavior, which we posit is an unreasonable assumption for most tasks

and interfaces. Hence, we experimentally challenge the assumption of equal probabilities

of interactions by exploring people’s actual interaction sequences as they analyze data.

To refine the metrics, we replicate the study conducted in Chapter 4.2, again using an-

choring bias with the basketball player categorization task. Anchoring bias describes the

tendency for people to rely too heavily on initial information when making a decision [51].

However, while in the previous study we characterized anchoring bias by analyzing the

differences in user behavior between two task framing conditions, in this study, we charac-

terize unbiased behavior by analyzing the commonalities in user behavior between the two

task framing conditions.

From recorded interactions, we derive a Markov model representing users’ observed
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interactive behavior across two bias conditions. Our analysis indicates that, rather than

equal probabilities of all interactions, people’s interactions can be better modeled roughly

based on the proximity of data points. That is, people are more likely to interact with

nearby data points than those that are far away.

4.3.1 Experiment Methodology

We conducted a study to explore the assumptions of “unbiased” behavior in the bias met-

rics. In the original formulation of the bias metrics [191] and subsequent experiment [190],

users’ interaction sequences were compared to unbiased behavior defined by equal prob-

abilities for all interactions. However, we believe this assumption is likely ill-fit for most

tasks and interfaces. In recent work, researchers constructed a theoretical Markov model

based on size of data points (pixel area on the screen) as an approximation for probabil-

ity of interaction [35]. We are motivated by such work to create a more precise model of

unbiased user behavior based on experimental observations.

We hypothesize that proximity can be used to better model user behavior. That is, peo-

ple will be more likely to interact with nearby data points than far away data points, by

starting with what they know (the initial anchoring information) and expanding their anal-

ysis, analogous to local exploration of graphs [137]. To test this hypothesis, we replicated

the experiment conducted in Chapter 4.2, summarized below, but refocused data analysis

to examine probabilities of interaction sequences. Participants were randomly assigned to

one of two task framing conditions, designed to anchor them on specific attributes of the

dataset. They were tasked to utilize all of the data to categorize 100 anonymized basket-

ball players by position (Center, Power Forward, Small Forward, Shooting Guard, or Point

Guard) using InterAxis [94] (Figure 4.3). To our knowledge, there is no known way to

explore truly “unbiased” or perfectly neutral user behavior. Users will be impacted by the

framing of the task, prior biases and experiences, etc. Hence, we approximate unbiased be-

havior by examining the commonalities between two groups of participants who are biased

83



in a controlled way.

InterAxis

Participants utilized a scatterplot-based visualization tool, InterAxis [94], the same version

of the tool used in the experiment in [190]. In the dataset of basketball players, each player

is represented in the scatterplot by a circle (Figure 4.3A), where details (statistics including

Height, Weight, Rebounds, Free Throws, etc.) about a player can be seen on the right

(Figure 4.3B) by hovering over a circle in the scatterplot. The axes of the scatterplot can

be manipulated by selecting from a drop-down, or by dragging points into the bins on

the left and right sides of the x-axis (Figure 4.3C). The system then computes a weighted

combination of attributes representing the difference between the points in the bins. The

weights can be further manipulated by dragging the bars beneath the x-axis (Figure 4.3D).

Users can click one of the colored circles on the right (Figure 4.3E) to display a description

of that position. Subsequently clicking on a point in the scatterplot will color and categorize

that player accordingly.

Analytic Task & Framing Conditions

As in the previous study [190], we likewise focus on the task of data categorization. Partic-

ipants were tasked to categorize 100 anonymized NBA basketball players5, 20 players for

each of the five positions: Center (C), Power Forward (PF), Small Forward (SF), Shooting

Guard (SG), and Point Guard (PG). Participants were not shown the name or team of the

players, but were given the following statistics: 3-Pointers Attempted, 3-Pointers Made,

Assists, Blocks, Field Goals Attempted, Field Goals Made, Free Throws Attempted, Free

Throws Made, Minutes, Personal Fouls, Points, Offensive Rebounds, Steals, Total Re-

bounds, Turnovers, Games Played, Height (Inches), and Weight (Pounds).

Participants were randomly assigned to one of two conditions. In each condition, we

5 http://stats.nba.com/
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manipulated task framing [179] to impact users’ analysis in a controlled way. The two

sets of position descriptions in the task were designed to anchor participants on a specific

set of attributes or statistics in the data (Figure 4.3E). Participants in the Size condition

were shown descriptions of the five positions that used statistics about their physical size

(i.e., Height and Weight), while participants in the Role condition were shown descriptions

that used statistics associated with their typical role on the court. For full experimental

details, including the specific language used in each framing condition, as well as additional

analyses, please refer to supplemental materials 6.

Participants

We recruited 13 participants to complete our study (7 in the Size condition). Eligible par-

ticipants completed a screening questionnaire to demonstrate sufficient background knowl-

edge about the domain (basketball) and visualization literacy (scatterplot interpretation) [18,

106]. There was no compensation to participants in the study.

Procedure

The procedure for this experiment followed the same as in [190], with differences de-

tailed below. Participants provided informed consent and completed two questionnaires

(demographic & interface usability). They were shown videos demonstrating how to use

InterAxis. Different from the procedure in [190], participants in this study were given the

opportunity to get accustomed to the interface for 5 minutes with a small dataset of 15 cars

to be categorized by type (as either sedan, SUV, or sports car); they were also shown a

refresher video on basketball positions. The main task took approximately 15-20 minutes,

during which interactions in the interface were logged. Different from [190], we collected

one additional piece of information in the interaction logs to aid our analysis: the locations

of all data points at the time of each interaction. In total, the experiment took about 45

6https://github.com/gtvalab/bias-markov
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(a) Role Condition (b) Size Condition (c) Size - Role

Figure 4.9: Aggregate probability transition matrices by condition. Rows (current interaction) and
columns (next interaction) represent each of 100 basketball players, grouped by position. The high-
lighted squares along the diagonals indicate subsequent interactions with the same player position.
Darker squares indicate higher probabilities.

minutes.

4.3.2 Data Analysis and Results

For simplicity in an initial model, we aggregated all interaction types (click, hover, drag)

with a data point into a single Markov state. Next, we filtered out some interactions. Hovers

and drags less than 100ms were likely accidental interactions [124], while the user passed

from one intentional point to the next; so we removed those interactions. Participants

performed, on average, 1043 interactions (SD = 390) which filtered down to an average

of 527 interactions (SD = 148). Participants had an average categorization accuracy of

54% (SD = 12%). Two participants (P12 and P13) did not label all 100 players in the

scatterplot. They categorized 89
100

and 97
100

, respectively. Next we describe and visualize the

probabilities resulting from our analysis.

Comparing Conditions

Figure 4.9 shows aggregate matrices representing the probability of interacting with sub-

sequent players in the scatterplot. Rows indicate the “current” interaction, and columns

represent the “next” interaction. Hence, a cell is colored darker according to the prob-

ability of interacting first with the associated “current” player and then with the “next”
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player, where players in each matrix are ordered by their position. We see similar patterns

across both conditions. Namely, there is a strong trend along the diagonal. That is, there

is approximately a 50% chance that from a given state (player interaction), users next tran-

sition will remain in the same state (interact with the same player again), regardless of the

condition (50.04% for role condition, 54.74% for size condition). The difference matrix

between the two conditions is shown in Figure 4.9c, revealing near-0 differences between

most transition probabilities in the two conditions (98.5% of transition probabilities< 0.1).

Collectively these results suggest similar transition probabilities between states, regardless

of condition.

Proximity Analysis

In this analysis, we wanted to approximate the probability of interacting with visually

nearby data points. To do so, we defined new Markov states by dividing the scatterplot

into equal size grids (Figure 4.10): 2x2 (4 states), 3x3 (9 states), and 4x4 (16 states),

and assessed the probability of interacting with points within and between these fixed grid

squares. We chose to use a fixed grid overlay for our analysis in order to examine proximity

even when the position of individual points on the dynamic scatterplot may be changing.

From the previous analysis, we know that multiple interactions with the same player are

significantly more likely (e.g., hover on a player then click to label). Hence, in this analysis,

we remove subsequent interactions with the same player to see if interactions with differ-

Figure 4.10: Interactions within the scatterplot were grouped into states in the Markov model by
dividing the scatterplot into (A) a 2x2 grid, (B) a 3x3 grid, and (C) a 4x4 grid.
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(a) 2x2 grid (4 states) (b) 3x3 grid (9 states) (c) 4x4 grid (16 states)

Figure 4.11: Aggregate probability transition matrices of all participants when Markov states are
defined by grouping points in the scatterplot in a 2x2, 3x3, and 4x4 grid. Darker squares indicate
higher probabilities.

ent basketball players tend to still follow trends of proximity. Furthermore, we observe no

significant difference between conditions, so here we present results aggregated for all 13

participants. Figure 4.11 shows the results of this analysis. We observe the hypothesized

pattern of proximity: users are more likely to interact with other data points within the

same grid square (i.e., nearby data points) than data points in different grid squares (i.e.,

far away data points). This is evident by the stronger colors and hence higher probabilities

along the diagonal. In Markov2x2, we find that nearby interactions (diagonal probabili-

ties in Figure 4.11) comprise, on average, 75.3% of subsequent interactions. Similarly, in

Markov3x3 and Markov4x4, we find nearby interactions to comprise 64.36% and 54.29%

of subsequent interactions, respectively. Apart from subsequent interactions within the

same grid square (higher diagonal probabilities), we also observe a trend in Markov3x3

and Markov4x4 parallel to the diagonal, indicating that people often perform subsequent

interactions with adjacent grid squares.

A New Baseline

Results of our experiment suggest that users are more likely to interact with nearby data

points than far away data points when performing a categorization task with an interactive

scatterplot. How do we now incorporate this information into a new probability matrix that

represents a baseline of unbiased behavior?
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We tend to favor simple models or modifications over more complex ones, with modest

changes to the equal-probability baseline. Hence, we propose that in the context of our

experimental task, a more accurate baseline of unbiased behavior could adjust from the

equal-probability baseline by distributing interaction probabilities such that subsequent in-

teractions with the same data point comprise roughly 50% of interactions from any given

state. We could likewise account for proximity by grouping points in grid squares (as in

Figures 4.10-4.11) and defining probabilities of subsequent interactions within each grid

square (nearby interactions) as at least 50% of interactions from any given state, according

to the grid size chosen.

4.3.3 Discussion

Explaining Unbiased Interaction Sequences

This experiment provides a more accurate baseline of unbiased behavior in the context of

our tool, dataset, and analytic task. However, we posit that these results may not be es-

pecially generalizable. Higher probability of interactions with a specific quadrant of the

dataset could be explained by the structure of the task. For instance, because the player

descriptions tended to point users to a specific part of the distribution (i.e., the tallest play-

ers, the players with the highest number of Assists, etc.), interactions with the high end

of the axis likely all occurred within a given quadrant. With all else equal, a slightly dif-

ferent problem framing may likely have yielded a vastly different baseline model. Hence,

it is important to account for the specific context of a problem when defining a baseline,

including the tool, task framing, and so on. Our experiment provides a model by which

more accurate baseline models can be derived through pilot studies for interfaces that may

utilize the bias metrics [190, 191].

89



Other Notions of Proximity

In this work, we focused on understanding how proximity can be used to model users’

interactive behavior. However, we only roughly estimated proximity by grouping interac-

tions into Markov states based on a grid pattern. The purpose of this choice was the ease

with which it could be computed using a Markov model. Future work could consider other

notions of proximity (e.g., measure the precise pixel distance between points).

Future Models

While the current study focused on analyzing data from the perspective of proximity, there

are many other variables that could impact user behavior. Future work could include an ex-

amination of how aspects of visual salience [115] impact interactive behavior (e.g., default

size of data points in the scatterplot, variable encodings using hue or opacity, etc).

Overfitting

There are numerous ways to model unbiased behavior, as mentioned above. However, a

common danger among them is to create models that are overfit to user data from a single

experiment. Hence, we must exercise caution in how we define or alter models of unbiased

behavior, keeping in mind that often the simplest approaches work best. The next step

given the current work to improve the baseline is to implement and compare it against

other potential baselines of unbiased behavior to see how well the resulting metrics are

able to detect deviations in user behavior in real-time.

4.3.4 Summary

In this section, we have addressed RQ 2.3 by conducting a study to observe how users

actually interact with visualizations. We replicated the study conducted in Chapter 4.2,

where participants performed a categorization task. We approximated unbiased behavior
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as the commonalities between participants in two different framing conditions. As a result,

we were able to refine the model of unbiased behavior used in the bias metrics.
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CHAPTER 5

MITIGATING BIAS IN VISUALIZATION

The final question, RQ 3, focuses on how to leverage the bias metrics in the design of

visualizations to mitigate biased decision making.

RQ 3: Can bias metrics be used in visual analytic systems to mitigate bias?

This question is divided into two parts: defining a design space of bias mitigation for vi-

sualization (Chapter 5.1) and evaluating one strategy, visualizing interaction traces (Chap-

ter 5.2).

5.1 Designing Bias Mitigation Strategies

Once we have metrics to characterize a user’s bias during visual data analysis, the next

high-level goal, RQ 3, involves exploring ways to utilize that characterization to ultimately

mitigate biased decision making. Specifically, this section focuses on the first sub-question.

It describes work that has been done in response to RQ 3.1 and was published as a short

paper at IEEE VIS [196].

RQ 3.1: How can an interface visually communicate the characterization

of a user’s bias?

As interactive visualizations are increasingly used for data analysis and decision mak-

ing in widespread domains, these processes can be improved by designing systems that

can both leverage analysts’ cognitive strengths and guard against cognitive limitations and

weaknesses, including biases. In this section, we focus on deriving a design space for

visualization systems that can mitigate bias.
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Prior work detailing bias mitigation, or debiasing techniques (Chapter 2.5), has largely

relied on non-technological strategies, like training courses [77, 79]. However, as data

analysis increasingly takes place through technological media, particularly using visualiza-

tion, we are motivated to consider ways in which visualization design can improve decision

making processes. While some prior work has provided guidelines toward mitigating one

type of bias in a particular context [40, 68], we take a more general approach aimed at

increasing real-time awareness of bias abstracted from a specific scenario. Given the recent

emergence of bias mitigation in visualization (and hence relatively little work done in this

area), our design space is derived from (1) prior work describing bias mitigation strate-

gies outside of the visualization community, as well as (2) potential areas of visualization

research that may inform the design of systems that mitigate bias.

Toward this goal, we must make a key assumption: that systems have information about

bias in the user’s decision or analytic process. Prior work has developed techniques that

make this assumption reasonable. For example, computational methods exist for quanti-

fying bias in the analytic process [68, 190, 191]. Given this information, or other forms

of de-biasing information, the goal is then to design systems that can help people make

better decisions by compensating for the ways in which people are likely to make cognitive

errors.

Many different types of biases can have common observed behavioral effects [100,

191]. For example, an analyst subject to vividness criterion [79] (over-reliance on informa-

tion that is vivid or personal) may interact with a particularly vivid data point repeatedly.

The same behavior is likely to be observed if the analyst is subject to a different type of

cognitive bias, like the continued influence effect [79] (continued reliance on a piece of

evidence, even after it has been discredited). As a result, some mitigation strategies can,

to varying degrees, have an effect on multiple types of biases [10]. Hence, in this design

space, we do not focus on any specific type of cognitive bias. Rather, we find it prudent

to introduce design considerations for mitigating bias and improving analytic processes,
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agnostic to a specific type of bias.

Within this context, the contribution of this work is the derivation of 8 dimensions of

vis design that designers should consider when developing systems to mitigate biased deci-

sion making, or retrofitting such capabilities in existing tools. These dimensions represent

aspects of a visualization system that can be manipulated in specific contexts to mitigate

biased decision making. We concretize these dimensions through examples using a hy-

pothetical VA system, fetch.data, to illustrate potential bias mitigation interventions.

While prior work on bias mitigation in the context of visualization and visual analytics is

limited, we find it timely to scaffold design efforts going forward when building systems

that can mitigate biased decision making.

5.1.1 Driving Areas in Visualization Research

While prior work on mitigating cognitive bias in the visualization domain is sparse [40,

68], we are motivated to define a design space in this emergent area. Hence, in the context

of visualization research, we derive inspiration from sub-fields of visualization research

that may be leveraged to mitigate biased decision making processes.

Guidance

According to Ceneda et al., guidance can be defined as “a computer-assisted process that

aims to actively resolve a knowledge gap encountered by users during an interactive VA

session”[26]. In other words, systems that guide users provide some form of assistance

during interactive data analysis (e.g., Scented Widgets [197] in collaborative settings or

VizAssist [17] for visualization creation).

Bias mitigation in VA can be loosely thought of as a form of guidance, where the goal is

to impact the user’s decision making in such a way as to promote a more balanced analytic

process and / or a more reasonable product or final choice decision. Within Ceneda et

al.’s [26] characterization of guidance, we focus on the output means in the context of bias
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mitigation. What can we show the user to facilitate an analytic process that is less prone to

the potentially negative effects of cognitive bias?

Analytic Provenance

Analytic provenance is a description of the analytic process leading to a decision [127].

Many researchers have shown the impact of raising users’ awareness of their process. Re-

searchers have shown ways to measure or visualize the user’s coverage of the data through-

out analysis [11, 89], leading users to make more discoveries [197] and analyze the data

more broadly [53, 104]. This body of research shows promise that provenance awareness

can alter user behavior in the context of bias mitigation.

Mixed-Initiative VA

Mixed-initiative [83] VA tools explore the balance between human and machine effort and

responsibilities. Some systems leverage users’ interaction sequences to infer about their

goals and intentions in an analytic model (e.g., [19, 194]). These types of mixed-initiative

tools inspire potential ways of mitigating cognitive bias as people use visualizations. In

particular, the machine could operate as an unbiased collaborator that can act on behalf of

the user, or take initiative, to mitigate biased analysis processes.

5.1.2 Design Space

In this section, we describe 8 dimensions (D1-D8) important to the design of bias miti-

gation strategies in VA tools. These 8 dimensions are not strictly orthogonal, nor are they

exhaustive. Rather, they represent our view on the aspects of visualization systems that

may be manipulated for the purposes of mitigating bias given current technologies. Due

to limited prior work on bias mitigation in VA, the process for deriving this design space

was largely ad-hoc, guided primarily by literature review in driving areas of vis research

(Section 5.1.1). Many of the dimensions are related (Figure 5.1).
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System Context

D1. Vis Representation


D2. Interaction Design

D7. Task Presentation and Framing


D8. Collaboration

D4. Type of Debiasing Information


D5. Degree of Guidance


D6. Intrusiveness

D3. Supporting User Feedback

via

User

Core Considerations Supporting Considerations Contextual Considerations

promotes common understanding 
between user and machine

relevant in some settingsconstrains / informs vis manipulationsvis components

Figure 5.1: The design space is comprised of 8 dimensions, described in Section 5.1.2. D1 (VI-
SUAL REPRESENTATION) and D2 (INTERACTION DESIGN) are the two core components of a vi-
sualization [55] that can be manipulated to mitigate biased decision making processes. How these
components are manipulated is informed and constrained by supporting considerations, including
D4 (TYPE OF DEBIASING INFORMATION), D5 (DEGREE OF GUIDANCE) and D6 (INTRUSIVE-
NESS). Some contextual considerations may only be relevant in specific settings, including D7
(TASK PRESENTATION AND FRAMING) and D8 (COLLABORATION). Finally, D3 (SUPPORTING

USER FEEDBACK) connects the user and contextual setting to the system by promoting a common
understanding between user and machine.

To ground our design space, we describe applied examples using a common scenario.

Suppose a hiring manager at a tech company uses a VA tool, fetch.data (Figure 5.2,

top) to analyze tabular data about job applicants. From potentially hundreds of applications

on file, the hiring manager wants to select a handful of candidates to interview. Suppose

the system is comprised of three interactive views: (A) a scatterplot view, (B) a filter panel,

and (C) a ranking table view. Scatterplot axes can be configured, the table sorted, and filters

used to adjust the subset of data viewed. For each design dimension below, we describe

the concept and revisit this example to illustrate how a visualization could be retrofitted to

mitigate biased decision making.

D1: Visual Representation

Concept. There are many possibilities for representing information that may have a debias-

ing effect. For bias interventions intended not to impose significant disruption to the user’s

natural analytic process, designers may opt for peripheral or ex-situ visualizations. Periph-
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B.2
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Size Points Filter Deactivation

Peripheral Metric View

Recommendations

User Feedback

Baseline System

Figure 5.2: An illustration of the system, fetch.data, used to analyze tabular data about job
applicants. The baseline system (top) consists of (A) a scatterplot view, (B) a filter panel, and (C)
a ranking table view. Possible bias mitigation interventions are shown below. (A.1) sizes candidate
data points based on the analyst’s interactions with them. (B.1) shows the system disabling the gen-
der filter. (B.2) shows a peripheral view of metrics quantifying bias. (D) shows recommendations
for candidates the analyst has not yet examined. (E) shows a pop-up allowing the analyst to provide
feedback when dismissing a notification.
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eral visualizations would appear in a separate view of the interface, potentially available

on demand, and hence may be less likely to call the user’s attention away from the primary

visualization. On the other hand, in-situ visualizations would appear within existing views.

For example, in-situ visualizations could encode debiasing information in previously un-

used visual channels (e.g., opacity, color, position, etc). The choice between in-situ v.

peripheral display of debiasing information should be informed by (1) type of debiasing

information, and (2) intended level of user attention to that information. Furthermore, the

representation of information should follow conventions described in vis research. For ex-

ample, chart types [153] and optimal visual encodings [30] should be considered based on

the type of data presented.

Example. Suppose the hiring manager is subject to anchoring bias, or the tendency to rely

too heavily on initial “anchoring” information [51] (in this case, the first few résumés re-

ceived). If the first handful of candidates happened to be males, successful bias mitigation

strategies could draw the user’s attention away from potential gender bias. Some metrics of

bias (e.g., those described in Chapter 4.1) compare the distribution of user interactions to

the underlying distributions of the data. This could be shown in a peripheral view showing

both distributions (Figure 5.2, B.2). Alternatively, a single metric quantifying the severity

of the bias could be encoded as an ambient background display where color or opacity rep-

resents level of bias. In another example, history (provenance) could be shown in-situ by

encoding size of scatterplot points as time spent examining each candidate, drawing atten-

tion to those (female candidates) who may have been unintentionally ignored (Figure 5.2,

A.1).

D2: Interaction Design

Concept. Altering the interaction design may be another impactful way to mitigate bias.

For example, a designer’s choice between a rectangle or lasso selection may have impli-

cations about how a user approaches a problem or task. Similarly, a system could disable
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interaction with data / views when biased behavior is detected. However, altering inter-

action design and affordances to mitigate bias can often come at the expense of perceived

user control and system usability. Designers of bias mitigation interventions should weigh

the tradeoffs of these choices so usability is not unduly compromised.

Example. Consider a filtering widget designed to mitigate bias. If the hiring manager

applies a filter to exclude female candidates in the data, a typical system response would be

to remove female candidates from the views in the visualization. The system could instead

respond by presenting a split or duplicated scatterplot view: one in which the manager’s

intended data is shown (male candidates), and one in which the filtered data is shown

(female candidates). Alternatively, the system could disable interactions with filters for

which a bias is exhibited (Figure 5.2, B.1).

D3: Supporting User Feedback

Concept. While the primary objective of bias mitigation interventions is to communicate

information from the system to the user, supporting user feedback is likewise important.

In real-world systems that may be able to characterize user bias with limited accuracy, it

can enable the user to communicate information outside the scope to the underlying model

of bias (e.g., that a presumed bias is not due to unconscious error, but rather an external

task constraint). When user feedback is supported, users may be given an increased sense

of mutual understanding or common ground with the system. Further, models of user bias

might be improved as a result.

Example. In the hypothetical hiring scenario, suppose the system detects a strong (gender)

bias in that the hiring manager has primarily interacted with male candidates. One system

response could be to recommend female candidates (Figure 5.2, D). However, the hiring

manager’s focus could be the result of a constraint on the task unknown to the system (e.g.,

a division of labor between two managers). If the manager dismisses the recommendation

of female candidates, the system can elicit feedback (e.g., via a pop-up dialog) to clarify
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information potentially outside the system’s purview (Figure 5.2, E). Reasons may include

things like a repetitive recommendation, an irrelevant recommendation, or an external task

constraint. According to the hiring manager’s selection, the system may alter the underly-

ing model of bias to account for these preferences or constraints.

D4: Type of Debiasing Information

Concept. A primary consideration in designing bias mitigation strategies is the type of

debiasing information that the system will capture and communicate to the user. Types

of debiasing information that could promote user awareness includes things like analytic

provenance, summative metrics that quantify the analytic process [54, 88], and so on. We

could further conceive of future systems that are able to identify specific types of bias

the user may be subject to by name (e.g., confirmation bias [126], anchoring bias [51],

etc). Systems should ideally communicate information about potential biases in a way that

guides users to counteract them (i.e., they should be informative and actionable).

Example. Suppose the hiring manager is exhibiting signs of availability bias [181], or a

heavy reliance on information that is most easily remembered or most recent (i.e., the most

recent application received). When bias is detected (i.e., the hiring manager is exhibiting

signs of availability bias), the system could show provenance information to the hiring

manager by adding an additional view to the interface that shows a snapshot of various

stages of history of the manager’s analytic process (e.g., like the history shown in [78]).

Alternatively, the system could show the results of summative interaction metrics, similar

to the metric visualization in [191] (Figure 5.2, B.2). This could enable the hiring manager

to reflect on their process and adjust.

D5: Degree of Guidance

Concept. Degree of guidance is analogous to Ceneda et al.’s guidance degree in VA

guidance [26]. It can be thought of as a spectrum that refers to how much the system
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“helps” the user. On one end of the spectrum, the system provides little intervention, while

on the other end, the system more aggressively steers the user. Ceneda et al. describe

three scenarios for degrees of guidance: orienting, directing, and prescribing, examples of

which are described below. The degree of guidance adopted must be considered alongside

tradeoffs of user experience. Systems that deny user control may come at the expense of

perceived usability issues.

Example. An orienting bias mitigation strategy would promote user awareness of their

biases. For example, the system could size candidates in the scatterplot according to the

hiring manager’s focus (where larger points represent neglected candidates; Figure 5.2,

A.1). A directing bias mitigation strategy could suggest candidates to the hiring manager

to consider from the pool of candidates who have not been analyzed (Figure 5.2, D). A pre-

scribing bias mitigation strategy would involve the system assuming initiative or otherwise

taking control from the user. An example of this might be disabling filters or interactions

with specific candidates (Figure 5.2, B.1).

D6: Intrusiveness

Concept. Intrusiveness refers to how much the system interrupts or otherwise intrudes

on the user’s analysis process. On the low end of the spectrum, bias information may be

presented peripherally or even on demand (i.e., user attention optional). Highly intrusive

mitigation strategies may present information front and center requiring the user’s atten-

tion until the perceived bias is addressed. This is akin to the distinction between reactive

(e.g., system responds only when prompted by the user) v. proactive systems (e.g., system

makes suggestions to the user) [198]. Proactive interventions would necessitate higher in-

trusiveness. The level of intrusiveness of the intervention should not outweigh the intended

benefit, however. In lower-cost decisions (e.g., analyzing a dataset of food to construct a

weekly menu), a highly intrusive bias mitigation strategy would likely be unwelcome to

the user. On the other hand, the intrusion may be acceptable for decisions that carry greater
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importance (e.g., criminal intelligence analysis). This dimension is distinct from D5 (DE-

GREE OF GUIDANCE). Consider the following analogy: suppose a person asks her friend

for directions from point A to point B. The friend may draw a map, suggest GPS, or walk

her friend there herself (i.e., DEGREE OF GUIDANCE). If she walks with her friend, she may

exhibit a spectrum of INTRUSIVENESS (e.g., how closely does she stand to her friend).

Example. In our hypothetical scenario, a minimally intrusive mitigation strategy may

present bias information to the hiring manager only on-demand. For example, there may

be a tab in the interface that reveals information about the model of user bias when clicked

on (Figure 5.2, B.2). A more intrusive bias mitigation strategy could be a pop-up notifi-

cation that repeatedly alerts the hiring manager until a less biased analysis state is reached

(Figure 5.2, D).

D7: Task Presentation and Framing

Concept. Changes to the presentation of information can have an impact on the analytic

process and outcome. Framing has been found to strongly shape decision-making [174], in-

cluding richness of language used and positive v. negative terminology to describe logically

equivalent information [179]. For instance, in one study, researchers showed that people

chose one treatment (surgery) over another (radiation therapy) when it was described as

having a 90% short-term survival rate v. a 10% immediate mortality rate [116]. In addition

to language, visual framing or anchoring can also shape decision making [29]. In situa-

tions where designers of bias mitigation interventions have control of the task, thoughtful

consideration should be given to the often subtle-seeming aspects of task presentation.

Example. This contextual consideration is primarily limited to situations in which the

designer has control over the presentation of the task (e.g., in a user study). In our hy-

pothetical scenario, the job description can impact the analysis process. For example, the

framing of criminal background criteria may alter the hiring manager’s threshold for mini-

mally viable candidates (e.g., the negative framing “does not have a criminal record” may
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lead to a lower decision threshold than the positive framing “has a clean record”). Visual

framing of information can also impact decision making (i.e., the relative size and spatial

arrangement of multiple views, the order in which the hiring manager is trained to use

them, etc).

D8: Collaboration

Concept. Collaborative contexts have potential to mitigate bias by allowing others to

check an analyst’s work. By leveraging “wisdom of crowds”, collaboration helps to ensure

that a single sub-optimal individual decision does not prevail [82, 143]. Analysts teaming

on a project may be alerted to biased behaviors, to ensure they cross-validate each other’s

work. In this case, prior work on fostering awareness in collaborative settings can be infor-

mative [11, 13, 76]. Collaboration is contextually relevant, as it may be infeasible in many

scenarios due to the nature of the decision (e.g., a personal healthcare decision) or other

constraints (e.g., division of labor).

Example. To leverage collaboration to mitigate biased decision making, designers of the

vis tool could show traces of other hiring managers’ exploration behaviors. For exam-

ple, this could entail coloring points in a scatterplot based on which have been previously

examined by other hiring managers (e.g., [11]), to promote social accountability.

5.1.3 Characterizing Existing Systems

Two recent works have designed interventions within visualization systems to mitigate cog-

nitive bias [40, 68]. For each, we describe the context of the problem, the bias intervention,

and how it fits within the aforementioned design space.

Mitigating Selection Bias

In analyzing high dimensional data sets, many dimensions may exhibit correlations. Hence,

when attempting to select a sample from a larger dataset, the analyst may unintentionally
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filter out a representative part of a population (i.e., selection bias) [68].

To mitigate selection bias, Gotz et al. modified a visualization tool, DecisionFlow.

Specifically, they modified an existing view in the visualization (D1, in-situ) by adding

a color-coded bar after each subsequent data selection to depict the similarity of the sub-

set to the original dataset. The color-coding of the bar was based on a computed value

(D4, bias metric) that quantified the differences in variable distributions between the two

datasets. They also added a secondary view (D1, ex-situ) that provided details about how

variables of the data were constrained either via direct or unintentional filtering via correla-

tion. These modifications represent an orienting degree of guidance (D5) that is relatively

unintrusive (D6). They did not modify the interaction design (D2), task presentation (D7),

or collaborative nature (D8) of the system, and did not enable user feedback (D3).

Mitigating the Attraction Effect

Dimara et al. designed an experiment to test two different strategies for mitigating the

attraction effect (the phenomenon where a person’s decision between two alternatives is

altered by the introduction of an irrelevant third option) in scatterplots [40].

In one strategy, they highlighted optimal choices with a brightly colored stroke (D1, in-

situ) before users clicked to select their choice point. This constitutes an orienting degree

of guidance (D5). In another design, they altered the task framing (D7) and interaction

design (D2) from “select a point” to “eliminate points until only one remains”. While

this was more effective than the first strategy, it could have usability implications as it

represents a more intrusive (D6) design. For both strategies, they do not support user

feedback (D3) or collaboration (D8). By virtue of these mitigation strategies taking place

within an experiment, the debiasing information (D4) was a precondition to the study.
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5.1.4 Discussion

This design space does not exhaustively include all possible contextual design considera-

tions when building visualization systems that can mitigate biased decision making. For

example, the device type may drive design choices that are compatible with varying input

modalities or screen sizes (e.g., haptic feedback or other non-visual channels when screen

real-estate is limited). Mitigation strategies may also be adaptive to the type of user of the

system (casual user, domain expert, data analyst, etc). Furthermore, while we have focused

on improving decision making processes, agnostic to a specific type of bias, there may be

more targeted mitigation strategies that address a specific type of bias. Some of these lim-

itations could be overcome by future systematic literature review (e.g., revisiting ad-hoc

dimensions).

Choices within this design space must be balanced with potentially conflicting design

considerations. For example, higher levels of INTRUSIVENESS may mitigate bias, but at the

expense of user frustration in using the system. In addition, we have assumed that the TYPE

OF DEBIASING INFORMATION is given a priori. However, the collection of this information

within a system may necessitate its own design considerations. Systems that compute

bias metrics based on user interaction sequences (e.g., [189, 190]) will have constraints

on VISUAL REPRESENTATION and INTERACTION to ensure that the user’s interactions

adequately capture their cognitive process. Hence, this may conflict with bias mitigation

strategies that involve altering that design.

5.1.5 Summary

In this section, we have addressed RQ 3.1 by describing a design space of considera-

tions that should be made when creating bias mitigation solutions. The design space con-

sists of 8 dimensions, related to the core components of the vis that can be manipulated

(VISUAL REPRESENTATION and INTERACTION DESIGN), supporting considerations that

drive the design (TYPE OF DEBIASING INFORMATION, DEGREE OF GUIDANCE, and IN-
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TRUSIVENESS), contextual considerations that are only relevant in some scenarios (TASK

PRESENTATION AND FRAMING and COLLABORATION), and keeping the user in the loop

by SUPPORTING USER FEEDBACK.
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5.2 Evaluating a Bias Mitigation Strategy

After designing different ways of utilizing the bias metrics for mitigation, it is next impor-

tant to evaluate the effectiveness of these strategies. Specifically, this section focuses on

the second sub-question of RQ 3. It describes work that has been done in response to RQ

3.2 and is in preparation for submission to IEEE VIS [195].

RQ 3.2: How effective is the visual representation of interaction traces in

an interface toward mitigating biased decision making?

As the sheer volume and ubiquity of data increases, data analysis and decision making

are increasingly taking place within digital environments, specifically facilitated by inter-

active visual representations of data. These environments provide a new way to measure

and characterize cognitive processes: by analyzing users’ interactions with data. Analyzing

user interactions can illuminate many aspects about the user and their process, including

identifying personality traits [20], recovering a user’s reasoning process [44], and most rel-

evant to the present work, quantifying human biases [191]. This work utilizes the power

of user interaction with the goal of increasing users’ awareness of potential biases that

may be driving their data analysis and decision making. In particular, we examine the

effectiveness of visualizing traces of users’ interactions toward increasing awareness of

bias.

To assess the impact of these interaction traces, we designed an interactive scatterplot-

based visualization system (Figure 5.3). We conducted two formative studies and one em-

pirical study in which users utilized this interface in a political decision making scenario.

We curated a dataset of fictitious politicians in the U.S. state of Georgia and asked par-

ticipants to select a committee of 10 responsible for reviewing public opinion about the

recently passed Heartbeat Bill, banning abortion in the state after 6 weeks. In this scenario,

several types of bias may impact analysis, including gender bias (e.g., bias favoring one

gender over another), party bias (e.g., voting along political party lines, regardless of po-
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tential ideological alignment from candidates in another party), age bias (e.g., preferential

treatment of candidates based on age), and so on. Note that we do not aim to address overt

biases or discrimination in this work; rather, we believe visualization can have an impact

on increasing user awareness of potentially unconscious biases that may impact decision

making in critical ways.

The primary contributions of this work are results of two formative studies and one

empirical study in which we analyze the effectiveness of visualizing interaction traces to-

ward increasing user awareness of social bias. We analyze two interventions: visualizing

interaction traces in real-time while analyzing the data and in a summative view after com-

pleting the task. Our findings suggest that visualizing interaction traces, particularly in a

summative format after the analysis process, is a promising way to increase users’ aware-

ness of bias. Furthermore, when decisions are complex (e.g., with high dimensional data),

real-time visualization of interaction traces may lead users to choose political committees

that are more proportional to the underlying dataset, specifically with respect to gender

bias. In the following sections, we present a description of the dataset and interface used in

the studies, specifics of the methodology, findings from two formative studies and one em-

pirical study, and a discussion of how these results can inform the design of future systems

that can mitigate potentially biased analyses.

5.2.1 Design Motivation

To increase user awareness of potential biases driving their decision making, we are mo-

tivated by literature in cognitive science on nudging [173] and boosting [74], that can in-

fluence people’s behavior and decision making by altering the choice architecture (i.e., the

way that choices are presented). We apply this analogy in the context of visualization

with the goal of “nudging” users toward a less biased analysis process. In visualization

research, prior work has shown some ability to impact user behavior, resulting in more

broad exploration of the data (e.g., by coloring visited data points differently [53] or by
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adding widgets that encode prior interactions [197]). Furthermore, we are inspired by work

on reflective design [158], wherein our purpose is not to prescribe an optimal decision to

users, but rather to encourage thoughtful reflection on motivating factors of those decisions

while users maintain full agency.

5.2.2 Methodology

To study the effect of visualization of interaction traces toward mitigating social biases,

we selected a political decision making task that was recently relevant and might elicit

multiple types of social biases (e.g., gender bias, political party bias, etc). We conducted

two formative studies (whose analysis was exploratory in nature) and an empirical study

that had a common task, visualization system, dataset, and procedure.

Task

The USA has a two-party political system: Democrats and Republicans [5]. In these stud-

ies, we focus on a political decision making scenario in the state of Georgia. In Georgia

congress, committees may be formed to explore complex issues, draft legislation, and make

recommendations [65]. Many such committees, particularly subcommittees around specific

issues, may be formed by top-down appointment [65]. With membership in committees of-

ten decided by an individual or by few, the decision can be subject to an individual’s biases.

In May 2019, Georgia’s incumbent Governor Brian Kemp signed a bill banning abor-

tion after 6 weeks (earlier than the previous state law of 20 weeks) [151]. Scheduled to take

effect in January 2020, the bill was received with significant controversy 1. Supporters of

the abortion bill hoped its effect would culminate in an overturning of Roe v. Wade (US

federal court decision protecting a woman’s right to an abortion, 1973), while opponents

hoped to challenge the bill before it became law. This series of studies leverages this con-

troversial context to study bias intervention strategies via increasing user awareness of bias.

1A judge ruled in favor of an injunction to block enforcement of the bill in October 2019 [39]
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Specifically, given a dataset of fictitious politicians, participants were instructed to select a

committee of 10 politicians responsible for reviewing public opinion in the state of Georgia

on the recent controversial Heartbeat Bill. We selected this task to simulate a realistic de-

cision making scenario common in American politics. Furthermore, this topic and dataset

can potentially elicit numerous types of social biases (e.g., gender bias, political party bias,

age bias, etc), both explicit and implicit. The instruction for forming the committee was

intentionally vague to avoid suggesting any particular criteria to participants.

System

Overview. We developed a visualization system intended to increase user awareness of

potential social biases in decision making. To assess the effectiveness of the interface,

we produced two versions: a Control (C) version of the interface, and an Intervention (I)

version of the interface, in which the Control interface was augmented to visualize traces

A

C

F

B

D

E

Figure 5.3: The interface used in these studies. The primary view is an interactive scatterplot
(A). Hovering on a data point populates a detail view below (B). Participants can add a data point
(politician) to their list of committee members on the right (C). Data can be filtered according to
categorical (D) and ordinal & numerical attributes (E). As the user interacts with the data, their
interaction traces are visualized in the top right in real-time, comparing the distribution of the user’s
interactions to the underlying dataset (F).
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of the user’s interactions with the data in real-time. The Intervention version is depicted in

Figure 5.3; components A-E are common across the Control and Intervention interfaces.

The primary view is an interactive scatterplot (A), where the x- and y-axes can be set

to represent attributes of the data via selection in a drop-down menu. Hovering on a point

(politician) in the scatterplot populates the detail view (B), which shows all of the attributes

of that politician. Clicking on the point in the scatterplot or on the star icon in the detail

view adds the politician to the list of selected committee members (C). Selected politicians

are shown in the scatterplot with a thick red border. Categorical attributes (e.g., gender,

occupation, etc) can be filtered in the panel on the left (D) with drop-downs, and ordinal

& numerical attributes (e.g., age, policy views, etc) can be filtered on the bottom left (E)

using range sliders.

Interaction Traces. In the Intervention interface, the user’s interaction traces are shown

in the interface in two ways: with respect to data points and with respect to attributes.

First, the points in the scatterplot are given a blue fill color once the user has interacted

with the politician, with darker shades representing a greater number of interactions (Data

Point Distribution metric, Chapter 4.1; Figure 5.3A). The Control interface, by comparison,

uses no fill color on the points in the scatterplot. Second, the top right view (Figure 5.3F)

compares the user’s interactions to the underlying distributions of the data for each at-

tribute. The attribute tags are colored with a darker orange background when the user’s

interactions deviate more from the underlying data and with a lighter orange or white back-

ground when the user’s interactions more closely match the underlying distribution of data

(Attribute Distribution metric, Chapter 4.1). Numerical attributes (age pictured) show a

gray curve representing the underlying distribution of data and a superimposed blue curve

representing the distribution of the user’s interactions (primarily with younger politicians).

Beneath the curve, the distribution of numerical attributes is broken down into four quar-

tiles (Attribute Coverage metric, Chapter 4.1) and colored according to whether the user

has interacted with data in each quartile. Categorical attributes compare user interactions
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to the underlying dataset using bar charts.

Technologies. We developed the tool using the Angular 7 framework [8] for the web

interface and D3.js [38] and Vega-Lite [187] to render the visualizations. We developed

the server in Python 3 and leveraged Socket.IO [161] for real-time, bidirectional communi-

cation with the web interface (user interactions sent to the server to compute bias metrics,

and the computed bias metrics sent back to update the visualization in real-time).

Dataset

We generated an artificial dataset of fictitious politicians. Each row in the dataset represents

a politician, where each is described by attributes such as GENDER, POLITICAL PARTY,

OCCUPATION, etc. Variations of the dataset were used in each study, shown in Table 5.1

and described in the relevant sections. The Python script to generate the datasets is included

in supplemental materials2.

2 https://github.com/gtvalab/bias-mitigation-supplemental

Table 5.1: Attributes describing the fictitious politicians in each of three studies. The names
are sampled from U.S. census data [146]. The distributions of biographical attributes in the
Formative Study 2 and Main Study columns are based on those found in the 115th U.S.
House of Representatives [118].

Attribute Formative Study 1 (X) Formative Study 2 (Y) Main Study (Z)
Name Sampled randomly by gender

Party 50% Democrat; 50% Republican 46% Democrat ; 54% Republican

Gender 50% Female; 50% Male Female (28% if Democrat; 12% if Republican); Male (72% if Democrat; 88% if Republican)

Occupation 25% each: Career Politician, Doctor, 
Lawyer, Business

26% Career Politician; 24% Business Person; 17% Lawyer; 11% Educator; 7% Judge; 3% 
Financier; 3% Doctor; 3% Farmer; 2% Military; 2% Engineer; 1% Minister; 1% Scientist

38% Lawyer; 23% Career Politician; 21% Business 
Person; 9% Educator; 5% Scientist; 4% Doctor

Education - 
4% High School; 2% Associate’s; 25% Bachelor’s; 22% Master’s; 5% PhD; 38% Law; 4% 

Medical, constrained by Occupation
- 

Religion - 88% Christian; 6% Jewish; 2% Mormon; 1% Muslim; 1% Hindu; 2% Unaffiliated

Age (Years) - Sampled from normal distr. with μ = 58 years, σ = 10 years

Experience (Years) 33% each: Low, Medium, High Sampled from normal distr. with μ = 9 years, σ = 3 years

Ban Abortion After 6 Weeks 33% each: In Favor, Neutral, 
Opposed

-/+ 3, constrained by party: D (-) R (+) 33% each: In Favor, Neutral, Opposed

Legalize Medical Marijuana - +/- 3, constrained by party: D (+) R (-) -

Budget for Free School Lunch - +/- 3, constrained by party: D (+) R (-) -

Increase Gun Control Legislation - +/- 3, constrained by party: D (+) R (-) -

Ban Alcohol Sales on Sundays - -/+ 3, constrained by party: D (-) R (+) -

Increase Budget for Medicare - +/- 3, constrained by party: D (+) R (-) -

Increase Budget for VA - +/- 3, constrained by party: D (+) R (-) -
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Figure 5.4: Typical timeline for both formative studies and the main study.

Procedure

Participants in the user studies were randomly assigned to use one of two versions of the

tool: Control (baseline) or Intervention (visualizing interaction traces in real-time). Each

study took approximately 45 minutes to 1 hour, divided as shown in Figure 5.4. The study

administrator first obtained informed consent, then participants completed a background

questionnaire. Participants were shown a demonstration video of the interface using a cars

dataset and then given the opportunity to practice by choosing a shortlist of 5 cars they

would be interested to test drive. Participants then performed the main task of the study.

There were two high-level phases of the main task. In the first phase, participants chose

an initial group of 10 politicians to form their committee. Meanwhile, their interactions

with the data were logged (axis configurations, filter interactions, click and hover inter-

actions with data points, and so on). Next, users were shown a summative visualization

intervention (e.g., Figure 5.5) that depicted, for each attribute of the dataset: the underly-

ing distribution (gray), the distribution of the user’s interactions (blue), and the distribution

of their committee (green). Then, based on any imbalances the participant observed, they

were given the opportunity to reflect and revise their committee if desired.
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Figure 5.5: An example of the summative metric view shown to participants after choosing their
initial committee. The distribution of the dataset is shown in gray, the user’s interactions in blue,
and their selected committee members in green.

5.2.3 Formative Study 1

The goal of this formative study was to understand the bias baseline – that is, to what

degree do things like gender, political party, and so on, impact people’s decision making

in this scenario? In this study, all participants used the Control version of the interface,

described in the previous section, to complete the task. Our hypothesis was that people

would focus explicitly on 1-2 attributes of the data, while other attributes may be sources

of unintentional implicit bias.

Dataset

We created a dataset of 144 politicians containing one politician with each unique combina-

tion of GENDER (Male, Female), PARTY (Republican, Democrat), OCCUPATION (Doctor,

Lawyer, Business, Career Politician), EXPERIENCE (Low, Medium, High), and the policy

view BAN ABORTION AFTER 6 WEEKS (Opposed, Neutral, In Favor). Names for each

politician were generated based on U.S. census data [146].
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Participants

We recruited 6 student participants from a large university (3 female, 3 male). 5 of the

participants self-reported that they most identified with the Democratic party, while 1 most

identified with the Republican party. All 6 indicated they were opposed to banning abortion

after 6 weeks. We discuss the limitation of participant sampling bias (specifically for polit-

ical party affiliation) in Section 5.2.6. Participants self-reported an average of 3.7 out of a

5-point likert scale for familiarity analyzing data using visualizations (1 = least familiar, 5

= most familiar). We refer to participants from this study as X01-X06.

Results

Participants rated the importance of attributes that influenced their committee choices on a

scale from 1 (least influential) to 7 (most influential). Participants indicated that they most

explicitly relied on attributes such as the policy view BAN ABORTION AFTER 6 WEEKS

(µ = 6.3), OCCUPATION (µ = 6.2), GENDER (µ = 5.8), EXPERIENCE (µ = 5.7), and

PARTY (µ = 5.2), while ignoring attributes like FIRST NAME (µ = 1.3) and LAST NAME

(µ = 1).

Many participants intentionally balanced the committee along several attributes (seek-

ing “balanced representation” – X02). For example, four participants balanced by GEN-

DER (5 men and 5 women). The same four also balanced by PARTY (5 Republicans and

5 Democrats). One participant, X06, intentionally biased heavily toward GENDER (choos-

ing a committee of 10 women), while attempting to balance other attributes to “represent

different views and backgrounds of women as this is a decision for women to make.”

The ways that participants biased their committee selections were explicit but nuanced.

While X05 balanced across GENDER and PARTY, she chose a committee with all 10 mem-

bers opposed to the bill, explicitly prioritizing “members (who) were very opposed to the

bill.” Similarly, X01 chose a committee of 4 politicians who were opposed to the bill, while

only 3 each who were neutral or in favor of the bill (i.e., breaking ties by biasing toward

115



those opposed to the bill), hoping for “a vote against the abortion bill” while also seeking

a committee that was “equally balanced amongst those who opposed, neutral, and in favor

of the bill.” The same participant, who identified as a Democrat, chose more Republicans

than Democrats in their committee (6 v. 4).

When bias was present (in the form of unequal choices across options), it appeared to

be the result of participants’ explicit choices of give and take rather than implicit or un-

intentional biases. One exception became clear in the summative review: X01 said “oh,

that’s interesting” upon realizing he had unintentionally focused on politicians with more

EXPERIENCE. However, this insight was the exception rather than the rule, as most partic-

ipants seemed unsurprised by the system’s accounting of their interactions and committee

member selections. We hypothesize this may be the result of the relatively low dimension-

ality of the data (5 attributes) and relatively few choices per attribute (2-4 possible values

per attribute) that enabled participants to maintain a reasonable mental bookkeeping of the

attributes they cared about. Hence, in the next formative study, we examine higher dimen-

sional data, with the goal of understanding the impact of implicit bias on people’s decision

making. Furthermore, the balanced dataset is unrealistic in American politics (e.g., politi-

cal party is strongly correlated with people’s views on specific policies), so the next study

examines a more realistic distribution of data.

5.2.4 Formative Study 2

In Formative Study 1, we found that participants were able to reasonably maintain a mental

accounting of their choices in the data and made explicit choices about how to balance or

bias the attributes as a result. The goal in this formative study was two-fold: (1) to increase

the dimensionality of the dataset from the previous study (and hence the level of realism as

people have more things to consider when making selections), and (2) to test the effective-

ness of an additional intervention (real-time interaction traces) toward mitigating potential

biases. To address the latter goal, participants were divided into either a Control or In-
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tervention condition, which dictated which version of the system they used to complete

the task. All participants still completed two phases of the study: initial committee selec-

tion, followed by summative review of interactions and selections, then revised committee

selection. The task and system are the same as those described in Section 5.2.2.

Dataset

We sought to increase the realism in this study by increasing the dimensionality of the

dataset (i.e., people have more features to keep in mind during their decision), and deriving

the dataset of fictitious politicians based on distributions found in the 115th US House of

Representatives [118]. In this version of the dataset, each of 100 fictitious politicians is de-

scribed by biographical attributes (e.g., OCCUPATION, RELIGION, EXPERIENCE, etc) and

policy attributes (e.g., each politician’s view on issues like LEGALIZE MEDICAL MARI-

JUANA, etc). Policy attributes take on an integer number ∈ [-3, 3] representing the strength

of the policy (1, 2, or 3; 0 is neutral) and position (in favor + or opposed -). For example,

a politician with -1 toward the policy LEGALIZE MEDICAL MARIJUANA would be some-

what opposed to legalizing medical marijuana. Politicians are assumed to primarily vote

along party lines, with a 1% chance of voting against their party and a 5% chance of a neu-

tral (0) policy. For non-neutral policy positions, values were sampled from a distribution of

30% ±1, 50% ±2, and 20% ±3, representing our general view that more neutral policies

(±1) are somewhat more likely than more extreme policies (±3), with party-dependent

policies (±2) being most likely. The dataset used in the study was produced by sampling

from the distributions described in Table 5.1, Formative Study 2 column.

Participants

In this study, we recruited 24 student participants from a large university (3 female, 21

male). 21 of the participants self-reported that they most identified with the Democratic

party, and 3 participants most identified with the Republican party. All participants self-
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reported at least moderate familiarity with analyzing data using visualizations (≥ 3 out

of a 5-point likert scale), with an average of 4.1. References to specific participants are

labeled according to condition (i.e., Y01-C – Y12-C for Control and Y01-I – Y12-I for

Intervention).

Results

We can analyze the bias mitigation strategies with respect to two measures of success,

which we refer to as process v. decision. That is, we can measure bias in the user’s analysis

process (using bias metrics [191]) as well as bias in their final decision (by looking at how

balanced the political committee is with respect to various attributes of the data). Data

analysis in this study was exploratory in nature. Next, we report on the most significant

results; however, analysis for all attributes is included in supplemental materials.

Bias in Analysis Process. We analyze bias in the analysis process between the Control

and Intervention conditions by comparing the bias metric values (Chapter 4.1). Viewed

over time, the bias metric values (Attribute Distribution, in particular) can indicate how

(a) GENDER attribute (b) AGE attribute

Figure 5.6: Study 2: Average Attribute Distribution metric values for Control (orange) v. In-
tervention (blue) participants. Higher values (closer to 1) represent higher bias compared to the
distribution of the attribute in the full dataset. There is no clear difference between conditions for
GENDER (a), but Control participants exhibited more bias toward AGE than Intervention partici-
pants (b).
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closely the user’s focus on the data analysis was proportional to the underlying data. Since

the data violates conditions of normality, we analyze participants’ bias metric values using

the Kruskal-Wallis test by ranks, a non-parametric one-way ANOVA [102].

Figure 5.6 shows the aggregate Attribute Distribution (AD) metric values over time for

participants in each condition for (a) GENDER and (b) AGE. Time is shown on the x-axis,

while the bias metric is shown on the y-axis (higher values = more bias). Orange curves

represent the average AD bias metric value for Control participants, while blue curves

represent the average AD bias metric value for Intervention participants.

Some attributes show little noticeable difference between conditions (e.g., GENDER),

while others show a clear distinction (e.g., AGE). For AGE (Figure 5.6b), Control par-

ticipants (orange) tended to have higher metric values over time than Intervention partic-

ipants (blue), suggesting that Intervention participants interacted with politicians whose

ages were more proportional to the underlying dataset. We verify this trend by comparing

the mean AD bias metric value for AGE over time for Control and Intervention participants

(µC = 0.857, µI = 0.729, H = 3.360, p = 0.057).

To better understand the potential impact of real-time bias mitigation strategies, we

examine bias metric values over time in conjunction with user interactions with the inter-

action trace view (Figure 5.3F). For example, Figure 5.7 shows bias metric values for AD

of PARTY over time for an Intervention participant. The user exhibits high bias throughout

most of the task. Red vertical lines indicate moments when the user interacted with PARTY

in the real-time interaction trace view. After interacting with the interaction trace view,

the participant’s bias toward PARTY decreases. One possible explanation is that the user

observed bias in their interactions toward Democratic politicians in the interaction trace

visualization and consequently went on to focus on Republicans to reduce the bias. This

trend is not universally true across all participants and attributes; however, it does demon-

strate some promise that the interaction trace view has potential to impact the way that

users interact with data.
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Figure 5.7: The Attribute Distribution (PARTY) metric value for one Study 2 Intervention par-
ticipant. Vertical red lines indicate interactions with PARTY in the real-time interaction trace view
(Figure 5.3F).

Balance: Bias in Final Decisions. After reviewing the summative interaction trace vi-

sualization, 12 participants immediately resubmitted their initial committee. Another 5

participants looked back at the data but ultimately made no revisions, and 7 participants

(4 C, 3 I) changed members of their committee. We describe analyses below from both

phases, and discuss this result further in Section 5.2.6.

During the study, several participants mentioned some desire to balance the commit-

tee they selected. However, people tended to refer to balance in different ways. Many

participants thought of a balanced committee as one which has diversity and / or equal

representation of values (e.g., Y15-C said, “I would have preferred to have members from

all the religious groups and education levels in the committee”); whereas others thought

of a balanced committee as one which was proportional to the dataset and / or electorate

(e.g., Y13-C said, in reference to the criteria for selecting his committee, that he sought “an

accurate representation of the opinions of the people of Georgia”). Some people seemed
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to refer to both notions in conflict. For example, upon realizing his chosen committee had

5 men and 5 women, Y09-I observed “There were more men in the dataset. I chose pretty

balanced.” We further address this multiplicity in balance perspectives in Section 5.2.6.

Supplemental materials contain visualizations and analyses for all other attributes of the

data, as well as additional ways of quantifying balance (e.g., by notions of diversity or

proportionality).

We use the term balance in the context of our analysis to quantify an objective ratio of

attribute values. For instance, we can discuss the issue of gender balance in the chosen com-

mittees by examining the ratio of male politicians chosen in each participant’s committee.

Since the data violates conditions of normality, we analyze participants’ balance in com-

mittees using the Kruskal-Wallis test by ranks, a non-parametric one-way ANOVA [102].

We focus herein on GENDER, since our exploratory analysis indicated the strongest effect.

We compare Control v. Intervention participants in Phase 1 and in Phase 2 of the

study. Of all attributes of the data, 9 participants (6 C, 3 I) self-reported that GENDER

was the primary consideration in their decision making. Figure 5.8a shows the ratio of

male committee members chosen in Phase 1 (x-axis) and in Phase 2 (y-axis). We find that
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(a) Study 2
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Figure 5.8: The balance of GENDER in committees chosen by 24 participants in (a) Study 2 and
(b) Main Study. Balance is shown as the ratio of men in each participant’s chosen committee in
Phase 1 (x-axis) and Phase 2 (y-axis), shape-coded by condition and color-coded by participant
gender.
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Intervention participants choose a higher ratio of male committee members than Control

participants in Phase 1 of the task (µC = 0.492, µI = 0.683, H = 4.795, p = 0.029) as

well as in Phase 2 (µC = 0.492, µI = 0.658, H = 4.537, p = 0.033).

While many participants thought of a balanced committee as one in which both genders

were represented in equal numbers (e.g., Y18-C expressed his criteria included “gender

equal”), the bias metrics represent the user’s interactions in comparison to the underlying

distribution of the data. In the study dataset, 13% were female politicians, while 87% were

male. Hence, the use of real-time visualization of interaction traces in the Intervention

condition tended to nudge participants toward a more male-dominant committee, consistent

with the underlying distribution of the data (Figure 5.8a, green), compared to people’s

tendency to pursue equal numbers of each gender (Figure 5.8a, gray).

Qualitative Feedback. Participants found the summative metric visualization most useful,

with a median Likert rating of 4.5 out of 5. They found varying utility in the real-time

bias metric visualizations (interaction traces): median 4 out of 5 for coloring points by

Data Point Distribution; 2 out of 5 for Attribute Coverage visualizations; 4 out of 5 for

Attribute Distribution of numerical attributes; and 3 out of 5 for Attribute Distribution of

categorical attributes. Of Intervention participants, two did not interact with the interaction

trace view at all, two interacted only toward the end of Phase 1, two interacted early on or at

random points in the analysis, and 6 interacted many times throughout the decision making

process. Collectively, these ratings suggest that participants preferred the summative metric

visualization over the real-time metric visualization.

With respect to the increased dimensionality of the dataset from Study 1, we found

that participants focused on explicitly balancing or biasing a few attributes, but could not

as easily maintain a mental accounting of all attributes in this dataset. Several partici-

pants indicated frustration as a result (e.g., Y07-I said “I can only do one thing at a time”).

Similarly, participants expressed more surprise about how their interactions and selections

mapped to the underlying dataset when considering the summative view, potentially indi-
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cating that the view increased their awareness of bias in their analysis process (e.g., Y10-I

said “I’m surprised I didn’t choose a doctor”). Some attributes that participants were less

explicitly focused on had high bias as a result. For instance, 0 participants indicated that

AGE was the most important attribute in their decision making; yet, high bias was observed

(Figure 5.6b). However, we see promise in showing interaction traces to increase users’

awareness of biases that may be both explicit and implicit.

Summary of Findings. In this study, we found qualitative evidence that increased di-

mensionality of the data and cardinality of attribute values resulted in some attributes less

explicitly managed and considered by participants. We also found that showing interac-

tion traces tended to lead participants to choose more proportional GENDER composition

in selected committees. In the case of a dataset with distributions sampled from the U.S.

House of Representatives, this means that we encouraged participants in the Intervention

condition to ultimately choose more men in their committees. We discuss the implications

of this result further in Section 5.2.6.

5.2.5 Primary Study

The two formative studies (Sections 5.2.3-5.2.4) informed us that (1) with relatively low

dimensional data, people are effective at maintaining a mental accounting of the data and

making explicit choices, and (2) showing interaction traces appears to be a promising way

of nudging participants to make choices of GENDER representation more proportional to

the underlying dataset. However, Study 2 had a few key limitations. Namely, there was

gender bias in our sampling of participants (21 men, 3 women), and the simulated dataset

differed from the intended population (U.S. House of Representatives) in a few major ways.

In this study, we address these two concerns.
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System

We made a few changes to the system for this study. In Study 2, beneath the distribution

curves, numerical attributes also showed coverage (Attribute Coverage metric) by visualiz-

ing four quartiles of the attribute range (Figure 5.3F, bottom), colored according to which

have been interacted with (blue) or not (gray). In Study 2, participants tended not to notice

or use this method of showing interaction traces and found it to be the least useful based on

Likert ratings (median 2 out of 5). Thus, we removed this feature for the main Study. We

also removed the default selection of the visible attribute in the interaction trace view (so

that the distribution comparison is only visible when the user selects an attribute). Now, if a

participant never interacts with the view, we can be sure they did not gain some unmeasur-

able insight by looking at the default view. We also allowed both categorical and numerical

attributes to be assigned to axes in the scatterplot (compared to numerical attributes only in

Study 2), with data points jittered to prevent overplotting.

Dataset

We sought a balance between the control in the Study 1 dataset and the realism in the Study

2 dataset. While the distributions in the Study 2 dataset were sampled from the U.S. House

of Representatives, there were key differences in the simulated dataset instance we used.

Minor variations included 52 Republicans and 48 Democrats, compared to expected values

of 54 and 46. More notable differences in the distributions sampled from v. the dataset used

in Study 2 included (1) only one female Republican (expected value of 6), (2) no ministers

(expected value of one), and no scientists (expected value of one). Furthermore, we found

that the high dimensionality led users to entirely ignore many attributes of the data. In this

study, we rectified these differences.

In this version of the dataset, each of 144 fictitious politicians is described by the at-

tributes in Table 5.1, Main Study column. Compared to the Study 2 dataset, we reduced the

cardinality of OCCUPATION to 6 options (from 12); we removed EDUCATION (given that
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OCCUPATION is often highly correlated); we removed all policy-related attributes, except

for BAN ABORTION AFTER 6 WEEKS. Furthermore, we ensured that the sampled dataset

included the appropriate distributions per attribute, including the intersection of GENDER

and PARTY.

Participants

In this study, we recruited 24 student participants from a large university (12 female, 12

male). 23 participants self-reported that they most identified with the Democratic party,

and 1 participant most identified with the Republican party. All participants self-reported

at least moderate familiarity with analyzing data using visualizations (≥ 3 out of a 5-point

likert scale), with an average of 4.1. References to specific participants are labeled ac-

cording to condition (i.e., Z01-C – Z12-C for Control participants and Z01-I – Z12-I for

Intervention participants).

Hypotheses

Based on observations and findings from the previous formative studies, we develop the

following hypotheses for the present study:

H1 Intervention participants will exhibit less bias in the analysis process than Control

participants w.r.t. AGE.

H2 Intervention participants will choose more proportional committee selections than

Control participants w.r.t. GENDER.

H3 Participants will use the real-time interaction trace view throughout the analysis to

keep track of their process.

H4 Real-time review of interaction traces view will impact interactive behavior.

H5 Summative review of interactions and committee selections will increase awareness

of bias.

H6 Summative review of interactions and committee selections will impact interactive
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behavior.

H7 Participants will find the summative interaction trace view more useful than the real-

time view.

Results

Bias in Analysis Process. Based on results in Study 2, we hypothesized that Intervention

participants would exhibit less bias in the analysis process for AGE than Control partici-

pants. We compare the average Attribute Distribution bias metric value for AGE over time

for Control and Intervention participants. We find that Intervention participants have a

lower average bias metric value over time; however, the result is not statistically significant

(µC = 0.854, µI = 0.784, H = 0.013, p = 0.908). Hence, our results provide little support

for H1.

Balance: Bias in Final Decisions. While Study 2 results showed significant differences in

the final decisions participants made for GENDER composition of their committees, we do

not find a statistical difference in this study with respect to the ratio of men in committees

in Phase 1 (muC = 0.492, muI = 0.467, H = 1.565, p = 0.211) or in Phase 2 (muC =

0.458, muI = 0.467, H = 0.430, p = 0.512). The ratio of male committee members

selected by participants is shown in Figure 5.8b. Thus, our results indicate no support

for H2. 8 participants (4 C, 4 I) ultimately chose a balanced committee with respect to

GENDER (5 men, 5 women). 11 others got close to a 50%-50% split with a balance of 4

men, 6 women (2 C, 4 I) or 6 men, 4 women (4 C, 1 I).

Effects of Real-Time Intervention. Only participants in the Intervention condition expe-

rienced the real-time visualization of interaction traces. Based on observations in Study 2,

we hypothesized that the majority of participants in this study would utilize the interaction

trace view (Figure 5.3F) throughout their analysis process (similar to Figure 5.9A). How-

ever, three participants never interacted with the interaction trace view, and three interacted

126



Z10-I

Z11-I

A

B

*

*

Figure 5.9: Interactions performed by two participants in the Intervention condition of the main
Study. The x-axis represents time (in discrete interactions). (A) Participant Z10-I interacted with
the interaction trace view (distribution realtime review) throughout their analysis; (B) Participant
Z11-I interacted with the interaction trace view only toward the end of Phase 1 of the study, before
reaching the summative phase (distribution summative review).

only at the end of Phase 1 to check their work before submitting (similar to Figure 5.9B).

Only two participants utilized the real-time interaction trace view throughout their analysis

as we anticipated. Thus, our results indicate no support for H3.

After interacting with the real-time interaction trace view, participants often made

changes to their selected committee during Phase 1. Because the interaction trace view

compares a user’s interactions to the underlying distribution of the data, we hypothesized

this would lead to changes in user behavior to make the committee more proportionally rep-

resentative of the underlying dataset. By qualitative examination, we find some instances

where this is true. For example, Figure 5.10A shows how one participant’s PARTY balance

shifts significantly after examination of the real-time interaction trace view for PARTY (blue

triangle). The participant adjusted the committee from 10 Democrats to 4 Republicans and

6 Democrats. In fact, examination of the interaction trace view made the participant aware
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Figure 5.10: The evolving balance of committee choices for (A) PARTY and (B) EXPERIENCE.
After participants interacted with the real-time interaction trace view (blue triangles), the balance
of their committee shifted.

of a mistake in her analysis: “I forgot I had only filtered by Democrats.”

While we do see some instances where committees were adjusted to be more propor-

tionally representative, we also see instances where participants adjusted their choices to be

more diverse or to be more consistent with pre-existing biases. For example, Figure 5.10B

shows one participant’s balance of EXPERIENCE prior to submitting the initial committee

in Phase 1 (dashed vertical line). Prior to examining the EXPERIENCE interaction trace

view (blue triangle), the participant had only selected politicians with a medium amount of

EXPERIENCE (6 ≤ x ≤ 10). After examination, she added committee members who had

high and low EXPERIENCE as well. While the majority of politicians fell in the medium

EXPERIENCE bin (88/144≈ 61%), this participant adjusted toward creating a more diverse

committee (4 high, 4 medium, 2 low) rather than one that was proportionally representative.

Thus, while we do observe participants make adjustments to their committees after using

the interaction trace view, there is no clear trend about the direction of those adjustments.

In addition to the interaction trace view (Figure 5.3F), we also showed interaction traces

by coloring points in the scatterplot based on the frequency of user interactions with those
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points, inspired by the technique described in [53]. However, different from the results pre-

sented in [53], we ultimately observed very little effect on participants’ breadth of explo-

ration. Since the data is normal, we performed a simple t-test to confirm. On average, par-

ticipants in the Intervention condition interacted with more unique data points (µC = 38.75,

µI = 41.67, t = −0.433, p = 0.670) and interacted more times per data point (µC = 7.25,

µI = 8.58, t = −0.877, p = 0.390), although the results are not statistically significant.

Hence, analysis for H4 is inconclusive.

Effects of Summative Interaction Trace View. All participants, regardless of condi-

tion, were exposed to the summative visualization of their interaction traces and committee

choices. We hypothesized that reviewing this summative visualization would lead partici-

pants to both increased awareness of potential biases, as well as influence their behavior in

some cases. Before proceeding to the Phase 2 revision, participants were asked to reflect

on their observations from the summative phase. Using an open-coding approach, we ana-

lyzed participants’ videos during the summative review phase for indications of awareness:

statements indicating the participant learned something about their process or selections.

All four authors coded one video and discussed to develop an initial coding. Using that

coding, all authors again applied that coding to a new video and revised the codes. Af-

ter 3 iterations, we achieved theoretical saturation, and one author proceeded to code the

remaining videos according to the type of statement (awareness, reflection, clarification)

and the object of the statement (data, interactions, committee, interface-interaction-trace,

interface-general, unknown). We distinguish awareness from reflection (statements dis-

cussing something the participant already knew about) and clarification (questions about

the data or interface). We coded a total of 170 statements, 75 of which were statements

about awareness (µ = 3.125 per person). 22/24 participants spoke at least one statement

indicating new awareness about their interactions or selections. The two participants who

did not make any awareness statements were Intervention participants who already saw the

interaction traces in real-time prior to the summative review phase. This confirms H5.
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However, despite 22/24 participants expressing increased awareness or surprise during

the summative review phase, only 8 participants (4 C, 4 I) revised their choice of committee

in Phase 2 of the study. 11 participants (7 C, 4 I) interacted more but ultimately chose not

to revise, and 5 participants (1 C, 4 I) resubmitted their initial committee without any

further interaction. One reason participants expressed for not revising their committee

was concern that making changes along one attribute might unintentionally have an effect

on another (Z09-I said “I didn’t realize I focused so much on business people ... But

I’ll leave it for now because it might mess up balance elsewhere”). More Intervention

participants immediately resubmitted than Control participants (4 v. 1, respectively), which

could suggest that Intervention participants already had increased awareness of how their

interactions and selections mapped to the underlying data due to the real-time interaction

trace views. Hence, they may have incorporated that information into their decision making

in Phase 1, whereas Control participants only saw this comparison in the summative view.

This provides some support for H6.

Of the revisions participants made in Phase 2, only two people changed GENDER com-

position (perhaps because GENDER was often an explicit focus in Phase 1). Comparatively,

all 8 participants who revised shifted the distribution of OCCUPATION in their selected

committee, 5 participants changed the composition of the policy BAN ABORTION AFTER

6 WEEKS, and 4 participants changed the composition of PARTY and RELIGION. How-

ever, as with interactions with the real-time interaction trace view, there was no clear trend

about the direction in which people revised their committees after looking at the summa-

tive interaction trace view. Along different dimensions, participants made revisions that (1)

increased the diversity or equal representation of the committee, (2) increased the commit-

tee’s representativeness of the underlying population in the dataset, or (3) were consistent

with the participant’s pre-existing biases.

Subjective Feedback. Overall, participants found the summative metric visualization to

be quite useful (median Likert rating of 4 out of 5). Real-time interaction trace visualiza-
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tions were rated a median of 4 out of 5 for Data Point Distribution coloring of scatterplot

points and a median of 3.5 out of 5 for Attribute Distribution in the interaction trace view.

In line with our findings from Study 2, these results suggest that the summative metric

visualizations may be more useful to participants than the real-time metric visualizations,

confirming H7. We posit this could be due to participants’ preference to focus on the task

at hand, then reflect and perform revisions to reduce cognitive load.

Summary of Findings. In this study, we addressed two of the primary limitations of

Study 2: sampling bias of participants with respect to gender and issues with representa-

tion in the dataset. Our analysis indicates that the strongest effect we observed in Study 2

on the impact of interaction traces on GENDER composition of committee selections has

disappeared in this study. This loss of effect could be the result of many potential fac-

tors, which we discuss further in Section 5.2.6. Nonetheless, qualitative analysis suggests

that participants positively viewed the summative interaction trace view, which increased

participants’ awareness of bias and in some cases, impacted their behavior as well.

5.2.6 Discussion

Where did the bias go? In Study 2, we observed a significant difference in Control v. In-

tervention participants regarding GENDER composition of selected committees. However,

in the main Study, this effect disappeared, in addition to a reduction in the magnitude of

effect on AGE for the bias metrics. One explanation could be that the complexity of the

choice was reduced compared to Study 2 (lower dimensionality of data and lower cardinal-

ity of attribute values); hence, participants were able to better maintain a mental accounting

of attributes they wanted to balance (as in Study 1). It could also be due to the change in

interface to allow categorical attributes to be assigned to the scatterplot axes. With cat-

egorical attributes assigned to axes, the points in the scatterplot formed distinct clusters,

which could turn a complex cognitive balancing task into a simple visual decision making

task (i.e., to choose a point from each cluster). Figure 5.11 demonstrates the distinction.
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A B

Figure 5.11: Points on the scatterplot are spread out when only numerical attributes can be as-
signed to axes (A). When categorical attributes can be assigned to axes, clusters of points form,
offloading a cognitive task to a perceptual one (B).

Z04-C said, about the benefit of clusters: “Since I have this [Political Experience, Party]

on the [Y, X] axis already, the filter kind of becomes redundant.” It is also possible that

the intervention in Study 2 had a stronger effect for participants of one gender, and when

the sampling of participants in the main study addressed gender bias by recruiting equal

numbers of male and female participants, the effect disappeared. We find some evidence

in support of this explanation: when comparing male v. female participants in the main

Study, we find some significant differences in committee balance for Intervention partici-

pants but not for Control participants. It could be that one gender is more susceptible to

being “nudged” with the intervention. This analysis is included in supplemental materials.

However, future studies are needed to isolate the cause.

Explicit v. Implicit Biases. In this series of studies, we have observed both explicit

and implicit biases. We hypothesized that participants would choose committee members

based on a few explicit criteria, and when dimensionality of data is high, that may result in

implicit bias when people lose sight of other attributes. These implicit biases may simply

be the result of lack of attention and unknown correlations in the data, or they could be

the result of more dangerous implicit attitudes and stereotypes that drive decision making.

From a behavioral perspective, the interactions users perform related to explicit or implicit

bias may look similar. Eliciting user feedback can then be helpful to refine models of bias

by users directly indicating if their focus was intentional or not (Chapter 5.1, dimension

D3). Nonetheless, some interactions may be more indicative of explicit decision making
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criteria (e.g., users assigning attributes to axes or filtering out subsets of the data), while

others may be a better signal of implicit biases (e.g., hovering on points for details). In

the current model, only interactions with data points (clicks and hovers) impacted bias

computations (axis and filter interactions were not used). This distinction could improve

future bias models.

Utility of Interaction Traces. Interventions (summative and real-time interaction trace

visualizations) in Study 2 and the main Study were designed to make users more aware of

potential biases in their decision making process. Participants tended to see utility in both

summative and real-time visualization of their interaction traces. Y12-I said “(I want to)

make a diverse group... for that, coverage and distribution tool was very helpful.” A few

participants expressed initial confusion about the interaction trace visualizations, which

were for the most part resolved by further inspection (Y22-I said “The blue bars overlap-

ping the gray bars was not intuitive at first go”). Many were made aware of previously un-

conscious biases, while others simply found it a source of interesting information (Y18-C

said “oh, I actually interacted with a farmer. Look at that”). However, this source of infor-

mation comes at a cognitive cost: it is yet another source of information that participants

need to monitor and incorporate in their decision making. We believe this is the primary

reason users preferred the summative interaction trace view over the real-time interaction

trace view.

Another possible explanation for this preference is that the summative view showed the

distribution of the participant’s choice of committee members (in addition to the interaction

distributions shown in both summative and real-time views). For some decision making

scenarios (i.e., incremental decisions), the distribution of intermediate choices could be

shown as another form of real-time intervention. This was echoed by some participants

who suggested this be incorporated as part of the real-time intervention (e.g., Y04-I said

“you should show the green bars in the task as well”). However, this approach may not

work for non-incremental decision making scenarios in which only a single choice is made
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(e.g., voting for a single presidential candidate v. selecting a committee of politicians). In

such cases, the only real-time information that can be shown to the user that might make

them more aware of biases in their process is their interaction traces.

Design Implications. With or without real-time interaction trace visualizations, some

participants found indirect ways to assess balance in their committee choices (e.g., by ap-

plying filters and cycling through combinations of scatterplot axes to see the distribution

of selected points). Hence, the affordances within the interface design can itself serve as

a potentially powerful bias mitigation approach, promoting user awareness and enabling

self-editing. Another example is enabling categorical attributes to be assigned to axes to

see categorical distributions of selected points, offloading cognitive decision making to

a perceptual task (Figure 5.11). Particularly in situations where cognitive overload may

prevent users from managing secondary views, designing the interface to afford indirect

assessment of their choices may be a better alternative.

Study Limitations. Study 2 suffered from a biased sampling of participants (mostly male

Democrats). In the main Study, we were able to correct for gender bias; however, due to

sampling within our university, we were unable to balance participants’ political party affil-

iations. Furthermore, there was no condition in which participants did not see either of the

interventions (Intervention participants saw interaction traces in real-time, and participants

in both conditions saw interaction traces in the summative view after Phase 1). We treated

Control participants’ Phase 1 selections as our Control group. Alternatively, we could have

added another condition in which participants used the Control interface, but rather than

seeing the summative interaction trace view, they were shown only a list of selected com-

mittee members. It could be the case that the act of asking participants if they want to

revise, regardless of any insights gained during the summative analysis, prompted behav-

ioral changes. Additional studies are required to isolate this effect. Lastly, our analysis

of awareness involved open-coding of participant utterances during the study. We avoided

asking participants to fully think aloud throughout the study and only specifically prompted

134



participants in a few instances. Hence, particularly in the case of real-time awareness, the

amount of verbalization was very specific to the individual participant. Furthermore, when

participants were prompted, the act of posing a question could be a confounding factor that

influenced awareness and reflection.

5.2.7 Summary

In this section, we have addressed RQ 3.2 by presenting results of a sequence of three stud-

ies indicating (1) as data dimensionality increases, people are unable to maintain explicit

mental decision making criteria for all attributes of the data, (2) when dimensionality of

data is high, interaction traces may be a promising way to increase user awareness of bias

and encourage users to make selections more proportional to the underlying dataset, and (3)

while people found real-time traces of their interactions to be useful, they ultimately found

the most utility in summative visualizations of their interactions and decisions, likely due

to cognitive overload during the task itself. This suggests that showing interaction traces to

the user is a promising way to increase awareness of potentially implicit biases in a political

decision making scenario.
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CHAPTER 6

REFLECTIONS

6.1 Perspectives on Bias

As described in Chapter 3, the term “bias” is overloaded, describing a multitude of concepts

with a single term. Hence, the goal of Chapter 3 was to provide a broader context to the

use of the term, including cognitive, perceptual, and social biases, as well as the objective

use of the term “bias” in cognitive models. The latter perspective tends to be the most often

overlooked. That is, people tend to be aware of cognitive, perceptual, and social biases; and

they all tend to carry a heavy negative connotation. These biases often represent sources of

human error. They likewise tend to overshadow more neutral or even positive uses of the

term “bias”.

For example, exogenous attention is captured by sensory input when someone speaks

your name in a crowded room [142]; however, rather than a negative error, biased attention

toward your own name compared to other names can be thought of as an evolutionary

advantage. Similarly, people often loosely discuss “good biases” v. “bad biases”, referring

in the former to often explicit criteria learned from experience (i.e., bias toward student

applicants with a higher GPA), compared to unconscious social biases (i.e., gender bias) in

the latter sense. Clearly, bias is not always a weakness or detriment.

Nonetheless, as a result of these heavy negative connotations surrounding the termi-

nology, we must ensure to carefully contextualize what we mean by bias, or even use

alternative terminology to describe it in some cases for the sake of communicative clarity.

For example, in the neutral case of bias as a model mechanism [193], we might instead

refer to bias from this perspective as simply a model parameter. In this sense, the negative

connotation of bias does not overshadow the intended use of the word.
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6.2 Implications of Balance Definition

The bias metrics (Chapter 4.1) are formulated based on the assumption that “unbiased be-

havior” is proportional to the distribution of the data. Visualizing these metrics in real-time

in Chapter 5.2 resulted in some significant changes in behavior, nudging participants to

choose political committees with GENDER balanced proportionally to the distribution of

the dataset. However, it begs the question if this was the right way to nudge participants.

An alternative and widely held perspective on bias and balance is that of equal representa-

tion across diverse values. Future work can explore to what extent different visualization

strategies are capable of nudging participants toward more proportional v. diverse choices.

In different decision making scenarios, one definition of balance may be more appropri-

ate than another (e.g., selecting a representative sample for a study v. deciding which job

candidates to interview). Nonetheless, designers have a social responsibility to choose

visualization designs and bias computation mechanisms that reflect social values without

unduly influencing participant behavior.

6.3 Bias in the Data Life-Cycle

This dissertation has focused on sources of human bias in decision making that impact

visual data analysis. To some degree, this assumes that the data being visualized is com-

plete, error-free, and unbiased, and that the visual representation is not misleading people

to make incorrect inferences. However, before a person sets eyes on a visualization system

to explore their data, there is a large portion of the life-cycle of data (Figure 6.1), mod-

els (Figure 6.2), and visualization (Figure 6.3) that is unseen. For example, humans often

decide by which strategies to sample data; humans label large amounts of data and define

features to feed into ML models; ML models may be subject to particular algorithmic bi-

ases, favoring some parts of distributions over others; the way that data and models are

visually presented can be biased by specific design choices in an interface; and the end
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Figure 6.1: The data pipeline [167].

Figure 6.2: The ML pipeline [6].

Figure 6.3: The visualization process model [25].

users of the data and model will carry their own cognitive, perceptual, and social biases

that influence their decision making.

At each phase of this life-cycle of data, bias can potentially be injected into the process,

by means of human or machine. There is a broad, open space that needs to be further
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explored: the intricate relationship between various sources of human and machine bias.

How can bias at one phase in the life-cycle impact the next? How do these biases propagate

to the final decisions humans make using data and models in visualization interfaces?

6.4 Could the mixed-initiative system impart bias to the user?

Yes. A less-emphasized aspect of emergent bias [59] is that the structure of the user inter-

face may influence and bias the interactions of the user. Reliance on machine automation

and automated decision aids can result in automation bias. This is the heuristic use of

automation instead of more vigilant information seeking and decision making [120, 121,

135]. The errors resulting from automation bias are concerning for mixed-initiative sys-

tems, wherein those errors might be integrated into the analytic results / visualizations or

even the analytic processes. Of particular concern in this domain are automation com-

mission errors. These errors are inappropriate actions resulting from over-attending to

automated aids without attention to the context or other critical environmental information

sources. Commission errors occur when a user accepts the recommendation of some ma-

chine analytics even when there is contrary evidence from other information sources, either

internal or external to the analytics system.1 The design of an interactive analytic interface

may lend itself to overemphasizing some analytic results or mixed-initiative recommenda-

tions, such as highlighting recommendations or altering things like the size or color that

might make some recommendations stand out over others. Automation bias in accepting

the most strongly emphasized recommendations could lead the analyst down a biased anal-

ysis path. Does the system or the user bear the responsibility for mitigating automation

bias? In this dissertation, I have demonstrated that if mixed-initiative systems can cultivate

emergent biases in both the machines and the users, then mixed-initiative systems also offer

new opportunities for humans and machines to team up to mitigate negative effects of bias
1Commission errors are contrasted with automation omission errors, which occur if the human-machine

team fails to respond to system irregularities or the system fails to provide an indicator of a problematic state.
In visual analytics, an omission error could occur if a system “knows” an algorithm might be mis-matched to
a data type but does not alert the analyst.
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through system design.

6.5 Bias Metric Accuracy

While I have demonstrated that the bias metrics (Chapter 4.1) are a promising characteriza-

tion of the analytic process, a user’s cognition is a complex state to model with numerous

confounding factors. The accuracy of the bias metrics ultimately depends on being able to

reasonably define what constitutes unbiased behavior. Then, the metrics can quantify when

user behavior deviates from unbiased behavior. There are many factors, apart from inherent

human biases, that influence the way people interact with data in visual interfaces, includ-

ing perceptual properties that may draw the user’s attention. I presented some evidence to

refine the bias metrics according to perceptual distance of visual marks (Chapter 4.3); how-

ever, many other perceptual factors can drive user behavior (i.e., clusters of points, outliers,

salient colors, and so on). Accounting for these perceptual factors is an important next step

toward refining models of user bias.

In addition to the perceptual properties of the visualization, there are other factors that

can influence user behavior. What the system infers as biased behavior may not be biased

in the negative sense of the term. For example, an analyst may focus on a specific sub-

set of data due to prior expertise, contextual knowledge not captured in the data, specific

constraints of the task assigned to the analyst, and so on. Furthermore, there may be differ-

ent cultural opinions of what constitutes biased behavior (e.g., with respect to gender bias

in historically matriarchal v. patriarchal cultures [154]). Technologies, including bias met-

rics, developed by humans and embedded in the fabric of society, cannot be value-agnostic.

Hence, particularly in light of the strong negative connotations of the word “bias”, we must

be careful to design metrics and systems that reflect societal values [58].

My goal in designing bias mitigation strategies (Chapter 5) is not to blindly assert value

of the analyst’s process. Instead, my goal of developing bias mitigation strategies is to

encourage a more reflective decision making process. With this goal in mind, I believe
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the optimal accuracy of the bias metrics to be secondary to the visual characterization

of the analytic process. Even an imprecise characterization of the analytic process can

nonetheless benefit users by causing them to reflect on their process before they make a

decision.
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CHAPTER 7

CONCLUSION

In summary, the goal of this work is to operationally define, detect, and mitigate biased

analytic processes in real-time through user interaction. I hypothesize that user interac-

tions can form a meaningful capture of users’ cognitive state during the analysis process.

This can be used to detect biased analysis processes. Furthermore, by increasing users’

awareness of their bias in real-time through the visual interface, I hypothesize that people

can ultimately make better decisions. In the course of confirming this hypothesis, I have

produced the following contributions to the visualization research community:

• Operational definitions of bias in visual analytics

• Computational metrics for the detection of cognitive bias from user interaction se-

quences in visual analytic tools

• Formative evaluation results indicating that the computational bias metrics can be

used to describe (anchoring) bias in a user’s analytic process

• Empirical evidence of a refined baseline of unbiased behavior that accounts for users’

tendencies to interact with nearby data points more often than far away data points

• Design alternatives for the mitigation of a biased analytic process

• Results of a sequence of user studies suggesting that showing interaction traces in an

interface can increase users’ awareness of potential biases

These contributions collectively advance the state-of-the-art in helping people minimize

biased analysis processes.
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